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INTRODUCTION 
Symptoms of Pierce’s disease of grape caused by Xylella fastidiosa are generally recognized as being caused by restricted sap 
flow and resultant water stress due to plugging of xylem elements (Goodwin et al. 1988; Purcell and Hopkins 1996; 
Mollenhauer and Hopkins 1974).  Such blockage is the result of massive bacterial aggregates and associated mucilage.  It is 
not clear whether the extracellular polymeric mucilage is of bacterial and/or plant origin.  Based on the analysis of the 
complete genome sequence of X. fastidiosa, gums produced by the X. fastidiosa are similar to the ‘xanthan gums’ produced 
by Xanthomonas campestris pv campestris, although they may be less viscous (Simpson et al. 2000).  In addition, tylose 
development in xylem vessels in response to the presence of the bacterium further restricts sap flow (Mollenhauer and 
Hopkins 1976.  These general concepts X. fastidiosa pathogenicity are readily recognized, although it is not understood how 
the bacterium becomes established in the turbulent habitat of a ‘fluid conduit’ i.e., xylem vessels and tracheae.  Bacterial 
spread through xylem elements is also poorly understood, albeit enzymatic degradation of pit membranes is thought to be 
involved (Mollenhauer and Hopkins 1976).  Colony formation is likely to be influenced by the physical constraints of the 
xylem element surface much like the formation of bacterial biofilms is influenced by surface characteristics 
(microtopography, chemistry, etc.) in other aqueous and fluid environments such as medical stints and prostheses, food 
handling equipment, and water supply systems (Ridgway and Olson 1981; LeChevallier et al. 1987; Caldwell and Lawrence 
1988; Sternberg et al. 1999).  Surface microtopography of these environments influence the temporal and spatial aspects of 
bacterial colonization (Bremer et al. 1992; Gorman et al. 1993; Korber et al. 1997; Arnold 1999).  Surfaces become colonized 
as cells (in this case bacteria) attach initially via physio-chemical forces, and ultimately with extracellular polysaccharides or 
ligand-mediated interactions.  The end result is the establishment of biofilms consisting of bacteria in a polysaccharide matrix 
that provide a protective habitat that is conducive for continued cell growth and colony formation. 
 
The recently completed sequencing of the X. fastidiosa genome has revealed several open reading frames with putative 
functions that may be associated with bacterial colonization of xylem vessels and disease (Simpson et al. 2000).  For 
example, at least one ORF with homology to the luxR family of transcriptional regulators has been identified (GenBank 
accession AAF83782).  Such genes encode proteins (LuxR homologs) that when bound by acyl-homoserine lactone 
autoinducer molecules (AI), regulate transcription of diverse types of genes (Fuqua et al. 1996).  Autoinducers are 
synthesized by enzymes that are encoded by luxI gene homologs.  The luxI – luxR regulatory system was first discovered in 
the marine bacterium Vibrio fischeri, however now related systems have been discovered in diverse species of bacteria 
including plant and animal pathogens (Cha et al. 1998).  Autoinducers diffuse bi-directionally across bacterial membranes 
and reach concentrations for efficient activation of LuxR regulators in environments of high bacterial density.  Thus the 
ability of AI to activate the LuxR regulators is a cell density-dependent response referred to as quorum-sensing or 
autoinduction.  The discovery of luxR homologs in X. fastidiosa strongly suggests that the bacterium produces AI and 
regulates genes in a density-dependent manner.  This finding is intriguing because it suggests that a luxI-luxR type quorum-
sensing regulatory system may be functioning in X. fastidiosa biofilm communities in xylem vessels. 
 
The overall goal of the proposed research is to identify factors that affect colonization and plugging of grape xylem elements 
by X. fastidiosa and to use this information for development of effective control strategies for Pierce’s disease.  Our approach 
is to determine physical and chemical factors that influence X. fastidiosa attachment and colony development using an in 
vitro system, and to establish whether genes associated with these activities are regulated by quorum-sensing.  The in vitro 
system that we propose has several advantages.  It will allow the direct observation of bacterial community development in 
‘artificial’ vessels microfabricated to possess topographies and chemistries similar to ‘real’ in planta vessels.  We will be able 
to determine how physical and in some cases biological parameters affect biofilm formation and plugging induced by virulent 
and avirulent or weakly virulent strains.  Furthermore, it will be possible to differentiate between plant-induced responses and 
those induced specifically by the pathogen. 



 

-19- 

 
OBJECTIVES  
1. Understand how the physical parameters of xylem tracheae and vessels influence Xylella fastidiosa colonization.  

Toward this, we will evaluate colony formation, mucilage production, biofilm development and  flow rate during and 
following colonization 

2. Determine whether X. fastidiosa produces acyl-homoserine lactone autoinducer molecules that are involved in regulation 
of genes associated with ability to cause Pierce’s disease. 
 

RESULTS AND CONCLUSIONS 
We have just received the funding for this project (October 2002). 
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