SURROGATE GENETICS FOR XYLELLA FASTIDIOSA

Project Leader: Valley Stewart
Cooperator: Bruce Kirkpatrick
Section of Microbiology
Department of Plant Pathology
Division of Biological Sciences
College of Agricultural & Environmental Sciences
University of California
University of California
Davis, CA 95616
Davis, CA

Reporting Period: The results reported here are from work conducted from July 1, 2002 to October 31, 2002.

INTRODUCTION

Xylella fastidiosa presents a formidable challenge to the molecular geneticist. Methods for the basic operations of genetic exchange, mutant isolation, and complementation are in early stages of development. The slow generation time, poor plating efficiency and requirement for complex culture media are further complications. Surrogate genetics (Maloy and Zahrt 2000) provides a means to at least partially bypass these challenges. Here, one creates a hybrid organism, transplanting genes of interest from the poorly-studied species (*e.g.*, *Xylella fastidiosa*) into a well-studied surrogate host (*e.g.*, *Escherichia coli*). Given sufficiently related hosts, one expects the transplanted genes to function in the surrogate essentially as they do in the original. One may then exploit the advantageous properties of the surrogate to perform a large number of experiments, making and discarding hypotheses to define various aspects of gene function. Once gene function in the surrogate has been thoroughly explored, one can perform a focused set of experiments, informed by the results from the surrogate, to examine function in the native host. The use of *E. coli* as a surrogate host for studying gene regulation would open a range of experimental approaches that are currently unavailable in *X. fastidiosa*, and lead to more rapid advances in understanding the control of key pathogenicity determinants. We are analyzing the transcriptional regulation determinants for genes whose products may be involved in pathogenesis (*e.g.*, *pil* genes, encoding type IV pili) as well as "housekeeping" genes involved in central metabolism (*e.g.*, amino acid biosynthesis).

OBJECTIVES

1. Apply bioinformatics to evaluate transcription control signals *in silico* for *X. fastidiosa* 9a5c
2. Construct and characterize a Φ(pilA-lacZ) operon fusion in *E. coli*
3. Construct and characterize a Φ(ghnA-lacZ) operon fusion in *E. coli*

RESULTS AND CONCLUSIONS

A first approach to defining transcriptional regulatory mechanisms in *X. fastidiosa* is to examine visually the upstream nucleotide sequences of genes whose regulation has been well-studied in other organisms. Common regulatory strategies will be revealed by common features in the sequences. Our initial analysis has focused on the *trp* and *his* operon transcription attenuation control regions which in enterobacteria and other species contain easily-recognized sequence features: regulatory leader peptide coding regions that are rich in codons for the regulatory aminoacyl-tRNA; stem-loop structures that serve as factor-independent transcription terminators; and alternative stem-loop antiterminator structures. However, as revealed by the genome sequence of *X. fastidiosa* strain 9a5c (Simpson et al. 2000), the *X. fastidiosa hisGDCBHAFl* biosynthetic operon upstream regulatory sequence exhibits no leader peptide or terminator structures. Therefore, *his* operon expression in *X. fastidiosa* is regulated by a mechanism other than transcription attenuation. The *X. fastidiosa trp* biosynthetic genes are not organized in a single *trpE(G)DC(F)BA* operon as in *E. coli*, but rather in three noncontiguous operons: *trpEGD*, *trpF*, and *trpBA*, in an arrangement mimicking that of *Pseudomonas aeruginosa*. Again, however, the *X. fastidiosa trp* gene upstream regions do not contain apparent regulatory regions similar to those for controlling *trp* gene expression in either *E. coli* or *P. aeruginosa*. Thus, regulation of these amino acid biosynthetic pathways must occur through other mechanisms in *X. fastidiosa*.

Environmental and genetic controls of exopolysaccharide (EPS) biosynthesis remain largely undefined (Rodrigues da Silva et al. 2001). The laboratory of Michael Daniels (John Innes Centre) has identified a cluster of linked *Xan. campestris* pv. *campestris* regulatory genes, mutations in which affect production of several extracellular enzymes, including endoglucanases and proteases, along with EPS. The *rpfC* and *rpfG* genes initially were thought most likely to encode direct transcriptional regulators of pathogenicity gene expression. However, more recent analysis indicates that the RpfG protein is probably not a direct (DNA-binding) regulator of *gum* gene expression (Slater et al. 2000). We constructed a Φ(gumB-lacZ) operon fusion in *E. coli*, in order to use LacZ expression as a measure of *gumB* promoter activity. However, this construct expressed only low levels of LacZ enzyme. Given the uncertain nature of *gum* operon regulation, we elected to turn our immediate attention to study genes whose expression is more readily predicted from sequence inspection.
We therefore chose to study the regulation of pil gene expression. These genes control the formation of type IV pili in a variety of organisms, and are required for gliding motility, adhesion and pathogenesis (Winther-Larsen and Koomey 2002; Shi and Sun, 2002). Expression of pilA structural genes requires a specialized RNA polymerase specificity determinant (σ54) which recognizes a strongly-conserved -12/-24 nucleotide sequence. One of two pilA homologs (XF2542) in X. fastidiosa contains a σ54-dependent promoter. We constructed a Φ(pilA-lacZ) operon fusion in E. coli, and observed that it expressed detectable levels of LacZ enzyme. We also cloned the regulatory pilSR genes (XF2546 and XF2545) from X. fastidiosa. However, we have not yet observed a pilR-dependent increase in LacZ synthesis, indicating that the PilSR regulators may not function well in E. coli.

Unpublished work of others indicates that σ54-dependent activators from other species do not function well with E. coli RNA polymerase. To approach this question directly, we are currently studying expression of the glnA gene encoding glutamine synthetase (XF1842). This is the best-studied σ54-dependent gene in E. coli, and the X. fastidiosa glnA upstream regulatory region is similar to that of E. coli. Furthermore, X. fastidiosa encodes the NtrB-NtrC sensor-regulator system for controlling glnA gene expression (XF1849 and XF1848). Because E. coli also encodes NtrB-NtrC, we will be able to evaluate glnA expression in response to both the X. fastidiosa and the E. coli regulatory proteins.

REFERENCES

FUNDING AGENCIES
Funding for this project was provided by the USDA Animal and Plant Health Inspection Service.