SPATIAL POPULATION DYNAMICS AND OVERWINTERING BIOLOGY OF THE GLASSY-WINGED SHARPSHOOTER IN CALIFORNIA’S SAN JOAQUIN VALLEY

Project Leaders:
Marshall W. Johnson
Dept. of Entomology
University of California, Riverside
Kearney Agricultural Center
Parlier, CA 93648

Kent M. Daane
Division of Insect Biology
Dept. of Environmental Science
Policy and Management
University of California
Berkeley, CA 94720

Elaine Backus
USDA, ARS, PWA, SJVASC
Parlier, CA 93648

Russell Groves
USDA, ARS, PWA, SJVASC
Parlier, CA 93648

Collaborators:
Youngsoo Son
Dept. of Entomology
University of California
Kearney Agricultural Center
Parlier, CA 93648

David Morgan
CDFA Mount Rubidoux Field Station
Riverside, CA 92501

Andrew Larson
Dept of Plant Science
California State University
Fresno, CA 93740-8033

Reporting Period: The results reported here are from work conducted from June 2004 through September 2004.

ABSTRACT
The purpose of this project is to define specific environmental constraints that influence glassy-winged sharpshooter (GWSS) population dynamics and overwintering success. We are beginning experiments to determine the temperature-dependent feeding biology of GWSS in temperature-controlled chambers. Experiments are underway in the recently established GWSS Experimental Laboratory on the campus of California State University, Fresno. Adult GWSS feeding and survival under different combinations of host plant type and temperature regimes will be monitored to determine the temperature thresholds for adult feeding activity. Complementary experiments measuring honeydew excretion rates have begun to determine the amounts of excreta collected upon exposed surface(s) of water-sensitive paper and will be compared among different temperature and exposure regimes. Electro-penetration feeding monitoring assays are underway at different temperatures on individually tethered and feeding GWSS adults. Time course examinations of waveforms reveal the frequency and duration of insect feeding behavior under varying environmental conditions. The seasonal population dynamics of GWSS will be monitored on selected host plants placed in different micro-climatic areas of the San Joaquin Valley. Results from these experiments will be coupled with climatological data to help to spatially define where GWSS can be expected to persist in the agricultural landscape and identify where continued management efforts should be directed to limit introductions into currently non-infested areas.

INTRODUCTION
The bacteria Xylella fastidiosa (Xf) causes economically important diseases of several agronomic, horticultural, and landscape ornamental crops (Pearson and Goheen 1988). The bacterium is transmitted by xylem feeding sharpshooters (Cicadellidae) and spittlebugs (Cercopidae) (Adlerz and Hopkins 1979, Purcell and Frazier 1988). In California, Pierce’s disease incidence has been exacerbated following the introduction, establishment and continued spread of the glassy-winged sharpshooter (GWSS), Homalodisca coagulata, which is an effective vector of Xf. GWSS was first detected in southern California in the early 1990’s and populations have since become established in many locations throughout southern portions of the state. First detected in Kern County in 1998, GWSS is now present in the San Joaquin Valley. However, the rapid population expansion first observed in southern California appears to be constrained to discrete regions within agricultural areas of the San Joaquin Valley and incipient, localized populations in urban areas of Fresno, Sacramento, Chico, and San Jose. The continued spread of GWSS into other California localities will almost certainly threaten the economic viability of grapes and other crop species susceptible to infection by various Xf strains.

Climate appears to play a significant role in the geographic distribution of diseases caused by Xf strains in California and throughout the southeastern U.S. (Purcell 1977, 1980, 1997). Similarly, populations of GWSS in the southeastern US appear to be constrained by climatic factors that limit the pest’s establishment and persistence (Pollard and Kalooostian 1961, Hoddle 2004). Presently, limited information exists on the overwintering biology and ecology of GWSS in the San Joaquin Valley of California. An emerging hypothesis is that GWSS may be limited by certain temperature thresholds at, or below, which feeding may be discontinued. In turn, we are designing experiments to carefully determine the thresholds below which feeding discontinues. Additionally, we will determine the critical duration of time spent in this non-feeding state, which may result in increased mortality. The results of the outlined experiments will advance our ability to define the specific environmental constraints that influence GWSS population dynamics and overwintering success. This information will by...
increase our present understanding of the overwintering requirements of GWSS with a focus on critical environmental and host species factors that may limit population distribution in the Central Valley of California.

OBJECTIVES
1. Identify the critical environmental constraints that influence the spatial population dynamics and overwintering success of GWSS in California’s Central Valley.
2. Characterize the impact of host plant species succession on the overwintering survivorship of GWSS populations that constrain the insect’s ability to become established and persist throughout the San Joaquin Valley.

RESULTS
Objective 1
Experiments designed to define the temperature-dependent feeding biology of GWSS are underway at the GWSS Experimental Laboratory on the campus of California State University Fresno (CSUF). Colonies of adult GWSS are maintained at this newly established USDA-ARS research facility in cooperation with research personnel from CSUF, the University of California (Riverside, Berkeley), and the California Department of Food and Agriculture. Plans are to characterize adult GWSS feeding and survival in climate-controlled growth chambers to determine the temperature threshold for adult feeding activity under different combinations of host type and temperature regimes. Adult insects from the rearing colonies, as well as field collected insects in reproductive diapause, will be caged on selected plant species at varying temperatures for different exposure periods in environmental chambers. At the completion of the exposure period(s), the three infested treatments of each plant species will be removed from the chamber and adult GWSS performance and survivorship monitored through the remainder of the adult insect life on the respective test plants in individual screen cages.

In preliminary trials designed to indirectly measure feeding rates, water sensitive paper placed under caged adult GWSS on cowpea collected varying levels of excreta at temperatures of 15.6, 10.0, and 4.6°C (Figure 1). Water sensitive paper strips (2” X 3”), which collect excreted honeydew, are placed adjacent to the plant stem and immediately below a 2” diameter cylindrical Lexan® cage in which adult GWSS are confined on a test plant. In future experiments, the paper will be notched and fit to the plant stem and will be manually replaced on a 4 hour interval over 24 hour intervals. Over the 24 h observations, 12 honeydew clocks will be used for each variety at each of 3 start times corresponding to 0600, 1400, and 2200 h to determine any influence of time of day (Padgham and Woodhead 1988). The amount of excreta collected upon the exposed surface(s) of water-sensitive paper will be compared among different, replicated temperature and exposure regimes to better refine the environmental conditions in which GWSS feeding is restricted or discontinued.

A third set of laboratory experiments are underway using an electro-penetration feeding (EPG) monitoring apparatus to perform waveform analysis at different temperatures. Ten day old adult female GWSS are used in these EPG experiments and are initially placed in separate acclimation cages for 2 hours at the appropriate temperature upon which they will be tested. Preliminary results illustrate differences in the frequency and duration of probing events (green-shaded boxes) of adult GWSS held at temperatures of 15.6, 10.0, and 4.6°C for 12 hour testing intervals on cowpea test plants (Figure 2). Waveform excerpts were taken approximately 225 seconds after the recording began and compressed 2000 times to represent 6.5 hours of recording. These preliminary results indicate that temperature grossly affects GWSS probing behavior between 4.4-15.5°C. In planned experiments, a total of 5 tethered insects will be simultaneously monitored as experimental replicates at temperatures of 12.2, 10.0, 8.9, and 6.7°C for exposure intervals of 6, 12, and 24 hour periods. Time course examination of waveforms will reveal the frequency and duration of insect feeding behavior and will help to accurately define the temperature threshold at which ingestion and other waveforms are halted (Serrano et al. 2000).

Objective 2
Seasonal population dynamics of GWSS will be monitored on selected host plants placed in different micro-climatic areas of the San Joaquin Valley: 1) the citrus-growing, foothill region of Tulare County; and 2) a GWSS-infested region of the valley floor just west of Porterville in Tulare County. In these experiments, we will examine GWSS survivorship in caged experiments on a selected host plant species. In each cage, fifty second generation GWSS adults, nearing reproductive diapause in the fall season, will be collected from natural infestations and released onto caged plants in late summer. Insects
CONCLUSIONS
We believe that this recently funded project has a high probability of success both in terms of generating significant new information regarding the overwintering population dynamics of GWSS in California and in providing practical guidance towards management of this pathosystem. This information will further be useful in accurately identifying specific regions of the Central Valley where GWSS overwintering survivorship is greatest and a significant threat of reinfestation is posed. Our research will expand on previous work that has characterized the role of climatic factors in the distribution of Xf diseases by defining the specific environmental constraints that influence GWSS population dynamics. Moreover, results from these experiments will be coupled with climatological data in an effort to spatially define those locations where GWSS populations may be unable to successfully overwinter or conversely where populations may find overwintering refuges from extended periods of temperatures that limit adult feeding (Figure 3).

Combined with our findings in laboratory bioassays, high resolution (i.e., 1 km scale) raster-based data can be queried to generate predictive maps revealing areas within the Central Valley that may function as “thermal islands”, which could favorably support GWSS overwintering populations compared to adjacent agricultural landscapes. As an example, Figure 3 illustrates results of a raster file generated from data collected in January 1993 portraying the number of occurrences where daily maximum temperatures never exceeded 10°C (50°F) for periods of 48 and 96 hours, respectively. With an improved understanding of the climatological limits of GWSS overwintering survivorship, these data can help to spatially define where GWSS can be expected to persist in the agricultural landscape and identify where continued management efforts should be directed to limit introductions into currently non-infested areas. The proposed research will generate critical new information about GWSS spatial population dynamics, thereby contributing towards the development of long-term, economically, and environmentally sustainable management solutions that will directly benefit agricultural producers, crop consultants, and other stakeholders.

REFERENCES


FUNDING AGENCIES
Funding for this project was provided by the CDFA Pierce’s Disease and Glassy-winged Sharpshooter Board.