GLASSY-WINGED SHARPSHOOTER'S POPULATION DYNAMICS AS A TOOL FOR ERADICATING GLASSY-WINGED SHARPSHOOTER POPULATIONS

Project Leader:

Robert F. Luck Dept. of Entomology University of California-Riverside Riverside, CA 92521

Cooperators:

Carlos E. Coviella Laboratorio de Ecología Universidad Nacional de Luján Luján, Argentina

Peter Andersen Southern Region Pest Management Center University of Florida Quincy, FL 32351 Mark Hoddle
Dept. of Entomology
University of California
Riverside, CA 92521

Russell Mizell Southern Region Pest Management Center University of Florida Quincy, FL 32351

Reporting Period: The results reported here are from work conducted from July 2003 to July 2004.

ABSTRACT

Our results indicate that 1) GWSS populations in untreated areas have been declining steadily during the last three years. Current populations are only 10 to 20% as dense as those during 2001-2002. 2) Forecast analysis indicates that, if the current trend is extrapolated, GWSS populations in untreated areas should decrease to negligible numbers some time after winter, 2008, and before summer 2013, depending on *Citrus* species. However, 3) analyses of the data sets currently available, show that adult GWSS densities are cycling around a possible equilibrium level of 600 adults in Valencias and 950 adults in lemons, when left untreated. The period encompassed by the data sets for Tangerines and Grapefruit is still too short for this type of analysis. 4) Overall, less than 30% of the first instar nymphs survive to the fifth instar nymphs, and less than 15% of these nymphs survive to become adults. 5) During this last winter (2003-2004), overwintering adult densities declined in grapefruit, tangerines, and oranges but they increased in lemons, in the absence of any significant production of nymphs. The latter suggests that adult GWSS were moving among trees and cultivars due to changes in the nutritional and/or moisture status of these trees. We will use the xylem fluid samples currently being analysed, to test this hypothesis.

INTRODUCTION

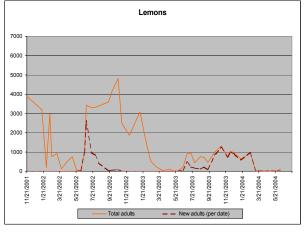
It is widely recognized that disrupting *Xylella* transmission and preventing Pierce's disease (PD) epidemics requires Glassywinged sharpshooter (GWSS) population levels to be exceedingly scarce. Recognizing critical points in GWSS' annual population cycles will allow us to identify the spatial and temporal scales during which GWSS populations are vulnerable to control measures timed to coincide with critical densities in its populations that can drive its local populations nearly extinct. In addition, determining whether GWSS populations will continue to decrease and eventually stabilize in the absence of pesticides but in the presence of parasitoids is of the utmost importance. Currently, almost all citrus groves infested with GWSS in California are treated. The groves at Agricultural Operations, University of California Riverside, are an exception. Our work in these untreated groves provides a means of exploring the dynamics of GWSS populations in untreated citrus groves exposed to egg parasitism. The results from these studies might also suggest the expected dynamics of GWSS populations inhabiting urban environments where GWSS is under little or no control except by egg parasitoids.

Our results to date suggest that GWSS has a major reproductive period during the spring and a second reproductive period during autumn. This autumn generation involves a dense egg population laid by the GWSS arising from the spring generation but very few of these eggs mature to become adult GWSS. Furthermore, nymphal mortalities are quite high, only about 30% of the first instar nymphs reach the last nymphal stage, and less than 15% of these first instar nymphs survive to become adults, but this varies between Citrus varieties. Although the source of this egg and nymphal loss still needs to be explored, we have measured egg parasitism ranging from 78% to 92% during the second half of the year. It is at this point that the GWSS may be vulnerable to a selective control measures. Our studies also showed an 80 to 90% decline during the last three years in valencias and lemons. The period of one year during which we have been sampling tangerines and Grapefruit is still too short to conduct a worthwhile analysis for these varieties (See figures 1 to 4). Next year's samples from the four citrus varieties will be crucial in testing whether the pattern in GWSS' dynamics continues or is transient.

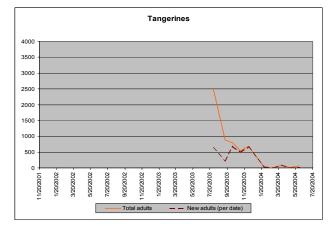
OBJECTIVES

This project seeks to characterize GWSS' spatial and temporal dynamics involved in its annual population cycles on its dominant host, i.e. *Citrus sp.* We seek to identify periods in this cycle during which selective control measures, appropriately

timed might drive the GWSS population below its critical density, thus leading to its local extinction. To fulfill this goal, we propose the following objectives:


- 1- Expand our current studies to follow GWSS population dynamics at a landscape level, including urban areas, using our whole host plant sampling technique.
- 2- Determine the relative contribution of the principal host plants to the adult GWSS production in each generation.
- 3- Determine whether correlations exist between GWSS' population dynamics on a given host tree and the host's xylem chemistry and whether this correlation explains GWSS' variable performance seasonally on different host plants.
- 4- Use this information to identify critical periods during GWSS' annual population cycle where selective control strategies might drive its local populations nearly extinct.

RESULTS


The number of adult GWSS in untreated valencia and lemon trees at the Agricultural Operations fields, University of California, Riverside has declined during the two and a half years of our study (Figure 1 through 4). GWSS densities on Tangerines and Grapefruit trees involves one and a half GWSS generations and, thus, is too short a period for a meaningful analysis of GWSS on these citrus varieties. Figures 1 and 2 show the mean number of adult GWSS obtained from three valencias and three lemons per sampling date, during the two and a half year sampling period. It is clear that a significant downward trend has occurred in the number of GWSS adults during the two and a half years. Peak densities have decreased by 67% for Valencias and 75% for lemons between 2002 and 2003. At the time of this report, we had not reached the peak adult densities for 2004, which typically occur in late August to early September. The GWSS samples from Tangerines and Grapefruit also show a decreasing trend. The average number of new adults produced in the three Valencia and the three lemon trees per sampling date also declined during the two and a half year study (Figure 1 & 2).

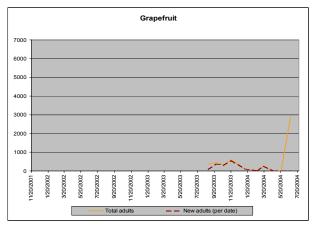

Figure 1. Actual adult GWSS densities (solid line) and newly produced adults per date (dotted line) in an untreated Valencia grove.

Figure 2. Actual adult GWSS densities (solid) and newly produced adults per date (dotted) in an untreated Lemon grove.

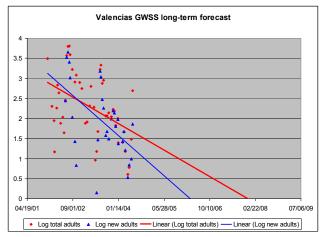


Figure 3. Actual adult GWSS density since Fall 2003 in an untreated Tangerine grove.

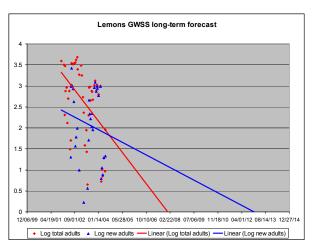


Figure 4. Actual adult GWSS density since Fall 2003 in an untreated Grapefruit grove.

A more interesting analysis using the population samples from Valencia and Lemon trees is presented in Figures 5 and 6. We plotted the total adult and the newly emerged (red-veined) adult density using a logarithmic scale. We then used a forecasting technique on these data for Valencia and Lemons separately, i.e. the lines in Figures 5 and 6 which show what would happen if the current trend is extrapolated until it reaches zero. Although it is unlikely that GWSS will ever reach zero, we use these plots to estimate a minimum and a maximum date when we expect these populations to reach their minimum. These two dates are estimated by the lines crossing the X-axis in each graph and encompass the time period during which we estimate that GWSS adult populations will reach their minimum.

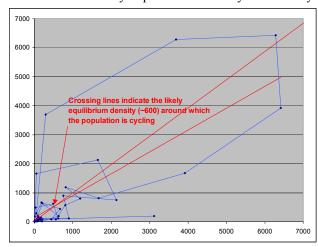


Figure 5. Logarithm of total and new adults in Valencias with trend lines showing expected "zero density" dates.

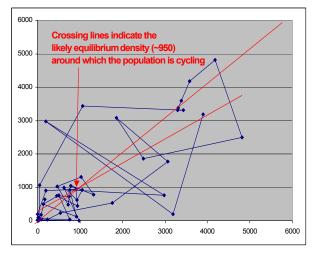


Figure 6. Logarithm of total and new adults in lemon with trend lines showing expected "zero density" dates.

If the current trend continues for several years the adult GWSS will reach their minimum densities within the next three to six years. However, as new data are collected and plotted on these graphs a more refined minimum density will be obtained but it is extremely unlikely that the GWSS densities will become extinct. A second and even more powerful technique can be used to analyze the GWSS dynamics (figures 7 and 8). These figures need some explanation. What they show is a plot of GWSS adult densities at any a specific date, as a function of the density at a previous time interval. In our case, it is the density of adult GWSS at a given week, as a function of the density two weeks previously. In a sense, it explores the effect on a given date's density, of the density two weeks prior. When plotted in this manner, we get a phase diagram that shows whether the GWSS population density is cycling and, if it is cycling, it shows the density around which the population is likely to be cycling. Figure 7 shows the phase diagram for Valencias. The point, at which the two diagonal lines cross, shows the density around which adult GWSS population cycles, generation after generation. This does not mean that the population will reach an equilibrium density at exactly that density. Rather, it indicates the density around which the population will cycle. For Valencias, this equilibrium density is about 600 adults per tree, and for lemons, it is about 950 adults per tree. Thus, this analysis suggests that GWSS will never reach "zero density," but will alternatively reach densities above and below the cycling density at different times of the year and in different years. The data sets for tangerines and grapefruit do not encompass a sufficient enough period of time to allow this kind of analysis. We will need at least another year of GWSS data before we can conduct this analysis using the forecasting technique. At the same time, a longer dataset for Valencias and lemons will likely improve the accuracy of this analysis.

Figure 7. Phase diagram for adult GWSS dynamics in GWSS Valencias (see text).

Figure 8. Phase diagram for adult dynamics in Lemons (see text).

CONCLUSIONS

Our work in untreated citrus groves has enabled us to explore what happens to uncontrolled GWSS populations. After an additional year of data, the GWSS densities on valencias and lemons are sufficient to allow us to tentatively forecast the time at which the GWSS will attain their minimum densities on each host cultivar. The analyses show that GWSS are decreasing at a rate that, if sustained, may drive GWSS populations to very low levels. The first technique used predicts minimum densities for GWSS to be achieved during the next three to six years. The second technique, the phase diagram, indicates that an extinction of GWSS is unlikely, and that the populations on valencias and lemons are each cycling around an equilibrium point. During periods when populations are above their equilibrium density, we are likely to see GWSS densities above 1000 adults per tree. In addition, we have shown that GWSS populations manifest different dynamics in different places. As the populations become less dense, their dynamics will bring stability, allowing GWSS to recolonize areas where densities are low when GWSS adults move from areas where GWSS densities remain high (see figure 4, grapefruits as an example). This type of behavior, called metapopulation dynamics at it is known to bring stability in a wide range of biological systems were animals can readily move from one place to another. This appears to be the case for the GWSS and we expect to see these type of dynamics to emerge in the next few years.

FUNDING AGENCIES

Funding for this project was provided by CDFA Pierce's Disease and Glassy-winged Sharpshooter Board.