Project Leader: Ed Weber UC Cooperative Extension Napa, CA 94559

Reporting period: The results reported here are from work conducted from February 2004 to September 2004.

ABSTRACT

Flight heights of blue-green sharpshooters between vineyards and riparian zones were monitored at eleven sites in Napa Valley in 2004 using pole towers to position yellow sticky cards up to 24 feet. At 10 of the towers, nearly 90% of catches from March-September were made at 15 feet or lower. At one tower, however, a large number of BGSS were caught in the upper traps in early March. This tower's proximity to a Coast Live Oak (*Quercus agrifolia*) tree suggests that BGSS may reside at higher elevations in trees at some times of year.

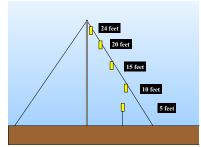
INTRODUCTION

Where the blue-green sharpshooter (BGSS), *Graphocephala atropunctata*, is the primary vector of Pierce's disease (PD), control measures should be aimed at reducing the number of BGSS entering vineyards (4), especially early in the growing season. Early-season infections (March-May) are responsible for most chronic cases of PD (6, 9). Those infections resulting from BGSS feeding later in the growing season are not likely to result in PD, because most will be eliminated with normal pruning. This is unlike the situation with PD caused by glassy-winged sharpshooter (GWSS) feeding, where chronic infections may occur nearly year-round (1).

Vector control measures in the North Coast include the use of insecticides (4) as well as management of riparian plant communities to reduce the number of favorable BGSS breeding host plants (5).

Another method of reducing vector numbers is to block their flight into vineyards through the use of physical barriers. This could include the use of tall fences made with insect screening materials, as well as natural barriers created by planting dense stands of conifers or other non-host tree species. Both of these approaches are already being employed in a few vineyards in the North Coast, although there are currently no data to show their impacts. The use of barriers has also been suggested as a management tactic to keep GWSS out of vineyards (2).

For barriers to be effective, they would need to block the majority of BGSS from entering vineyards, since small numbers of insects can still lead to significant disease development (8). Unfortunately, little is known about the overwintering behavior of BGSS and its preferred winter plant hosts (7). Therefore, it is not clear how tall a barrier would need to be in order to be effective. Most trapping by both researchers and growers has been done from the ground at the 5-6 foot level. Monitoring of BGSS flight activity at higher elevations has not been reported.


This project addresses the question of BGSS flight height by installing and monitoring pole towers that can accommodate yellow sticky card trapping up to a height of approximately 24 feet.

OBJECTIVE

1. Evaluate the predominant flight height of blue-green sharpshooters entering vineyards from adjacent riparian habitats through the use of yellow sticky cards positioned at heights from 5 to 24 feet.

RESULTS

Eleven pole towers were installed and monitored in the Napa Valley in 2004. Towers were positioned along riparian zones adjacent to vineyards with a history of Pierce's disease. A diagram of a pole tower is shown in Figure 1. Towers were 25 feet in height, constructed from Schedule 40 PVC pipe. Yellow sticky cards were attached to clips on rope at the following heights: 24 feet, 20 feet, 15 feet and 10 feet. An additional trap at 5 feet was mounted on a stake.

to March 9. Traps were monitored on a weekly basis through September and numbers of BGSS were recorded. Traps were replaced every two weeks or as needed.

Eight towers were installed in February 2004; the remaining three were installed prior

Figure 1: Pole tower diagram.

Figure 2 shows the average numbers of BGSS trapped at various heights during the early season period of March-May. Figure 3 shows the average numbers of BGSS trapped at various heights during the entire trapping period of March-September. Figures 2 and 3 include results for all towers except #10, which will be discussed separately.

From March-May, each tower averaged 16.4 BGSS. Of these, 88.3% were caught at 15 feet or lower. For the entire season, each tower averaged 23.5 BGSS. Of these, 89.7% were caught at 15 feet or lower. The patterns of trap catches for the early part of the season and the full season were nearly identical.

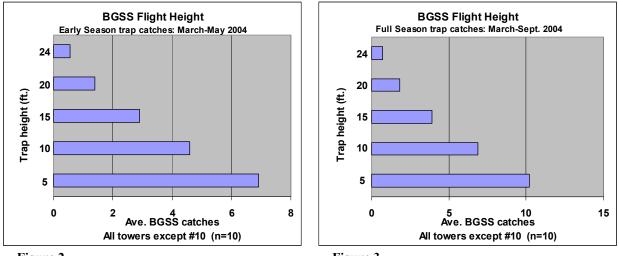
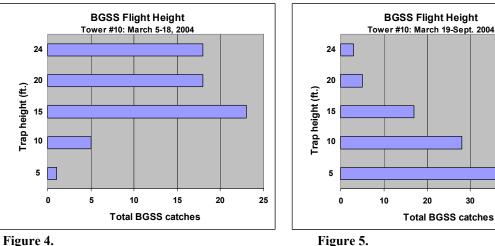


Figure 2.



These data suggest that a 15-20 foot high barrier could be effective at greatly reducing the number of BGSS entering vinevards. However, previous work with insecticides showed that even with 70-90% reductions in BGSS trap counts, the incidence of PD was not significantly reduced in vineyards planted with highly sensitive varieties (8). With a 10-15 foot screen barrier, the number of BGSS flying over the top could still result in significant amounts of PD in an adjacent vineyard.

Tower 10 had early season results very different than the others and is therefore considered separately. Figure 4 shows trap catches at Tower 10 during early March. Unlike the other towers, most BGSS were caught on the upper traps. However, for the rest of the season, the pattern of trap catches mirrored that of the other towers, albeit with greater numbers of BGSS (Figure 5).

Tower 10 was installed adjacent to a Coast Live Oak (Quercus agrifolia) tree, an evergreen species. Most of the other trees and shrubs in the vicinity of Tower 10 were deciduous species. In early March, these plants were still dormant or just beginning to bud out. A record heat wave in early March led to daily high temperatures of 70-85°F for nearly 2 weeks. The estimated flight threshold temperature for BGSS is 58°F (2). This unseasonable heat wave led to significant BGSS flight activity in early March as evidenced by elevated trap numbers at Tower 10 and others (data not shown).

The Coast Live oak tree adjacent to Tower 10 was apparently a preferred host plant at this time. If BGSS commonly reside in tall trees during the spring, then the effectiveness of barriers will likely be reduced. Additional studies are needed to better elucidate the early spring host preferences of BGSS in riparian zones, especially at higher elevations in the riparian canopy.

40

50

CONCLUSIONS

Nearly 90% of the BGSS trapped in this study were caught on traps at 15 feet or lower. This suggests that barriers could have a significant impact on reducing the numbers of BGSS entering vineyards. However, this may not be enough to have a major impact on reducing the incidence of PD. In addition, results from one tower indicated that BGSS may reside in some trees early in the season. This could allow for higher than normal flight activity, allowing more BGSS to enter vineyards by flying over a barrier. The effectiveness of barriers at reducing the incidence of PD will likely depend upon the nature of the adjacent riparian plant community, its mix of host plant species and the number of tall host trees.

REFERENCES

- 1. Almeida, R.P.P. and A.H. Purcell. 2003. Transmission of *Xylella fastidiosa* to grapevines by *Homalodisca coagulata* (Hemiptera: Cicadellidae). J. Econ. Ent. 96(2):264-271.
- 2. Blua, M.J. and D.J.W. Morgan. 2003. Dispersion of *Homalodisca coagulata* (Hemiptera: Cicadellidae), a vector of *Xylella fastidiosa*, into vineyards in southern California. J. Econ. Ent. 96(5):1369-1374.
- 3. Feil, H., et al. 2000. Effects of temperature on the flight activity of *Graphocephala atropunctata* (Hemiptera: Cicadellidae). Journal of Economic Entomology 93(1): 88-92.
- 4. Goodwin, P., Purcell, A. H. 1992. Pierce's disease. Grape Pest Management, 2nd Edition. Oakland, University of California, Division of Agriculture and Natural Resources: 76-84.
- 5. Insley, E., et al. 2000. Riparian vegetation management for Pierce's disease in North Coast California Vineyards. An information manual from the North Coast PD Task Force. 46pp.
- 6. Purcell, A.H. 1975. Role of the blue-green sharpshooter, *Hordnia circellata*, in the epidemiology of Pierce's disease of grapevines. Env. Ent. 4:745-752.
- 7. Purcell, A.H. 1976. Seasonal changes in host plant preference of the blue-green sharpshooter *Hordnia circellata*. Pan-Pacific Ent. 52:33-37.
- 8. Purcell, A.H. 1979. Control of the blue-green sharpshooter and effects of spread of Pierce's disease of grapevines. J. Econ. Ent. 72(6):887-892.
- 9. Purcell, A.H. 1981. Vector preference and inoculation efficiency as components of resistance to Pierce's disease in European grape cultivars. Phytopath. 71(4):429-435.

FUNDING AGENCIES

Funding for this project was provided by the CDFA Pierce's Disease and Glassy-winged Sharpshooter Board.