A SCREEN FOR XYLELLA FASTIDIOSA GENES INVOLVED IN TRANSMISSION
BY INSECT VECTORS

Project Leaders:
Alexander Purcell
ESPM-Division of Insect Biology
University of California
Berkeley, CA 94720

Steve Lindow
Plant and Molecular Biology
University of California
Berkeley, CA 94720

Researcher:
Clelia Baccari
ESPM-Division of Insect Biology
University of California
Berkeley, CA 94720

Reporting period: The results reported here are from work conducted from July 2004 to September 2004.

ABSTRACT
The sharpshooter vector transmission of Xylella fastidiosa (Xf) to grape causes Pierce’s disease (PD). Identification of genes in Xf which are responsible for transmission is an essential step in understanding bacteria-vector interactions and may shed light on biofilm formation by Xf.

The aim of this work is to understand the role of the genetic regulon of the rpf (regulation of pathogenicity factors) system in Xf and its role in disease transmission. In Xf, the rpf system likely regulates genes important for colonization of and transmission by insect vectors. The rpfF gene is one of the essential genes of the rpf cell-cell signaling system. Transcriptional control regulates genes by cell-cell signaling. The rpfF gene codes for the enzyme that synthesises the signaling molecule, DSF (diffusible signal factor). This system regulates the expression of a host of genes that are as yet unidentified in Xf. The rpf gene cluster of Xanthomonas campestris pathovar campestris is required for pathogenesis of this bacterium to plants (Dow et al. 2000).

In a transmission experiment with the sharpshooter leafhopper Graphocephala atropunctata (BGSS), the Xf strain KLN61 (an rpfF knockout mutant) could not perform cell-cell signaling. It was not retained by the insect vector and consequently not transmitted to the plants (Newman, 2004). When the Xf rpfF mutant strain was compared with Xf wild type, it showed to be hypervirulent, non-transmissible, and lacked biofilm formation. Because the spread of Pierce’s disease requires the transmission by insects, this indicates that blocking bacterial transmission by insect vectors may be a strategy for controlling PD. However, this requires a better understanding the role of cell-cell signaling by Xf and its importance for transmission.

INTRODUCTION
This research study, during its first year, will focus on constructing mutant libraries. By screening for mutations that suppress the non-transmissible phenotype on the rpfF mutant, we will identify the genes involved in transmission using two approaches. The first approach is to restore transmissibility through mutagenesis by disrupting genes normally down-regulated by DSF with a “disrupting transposon” (Figure 1).

![Figure 1: Disrupting transposon mutagenesis to block gene function.](image-url)
In parallel, an “activating transposon” will be designed to activate transcription of genes normally up-regulated by DSF (Figure 2).

Figure 2: Activating transposon mutagenesis to enhance gene function.

The activating transposon will contain a constitutive promoter that will activate transposition of genes downstream of its insertion site (Newman, 2003). This dual approach will increase the likelihood that we can obtain mutants with restored transmission, and will give us information about those processes that are required for transmission, as well as those processes that must be “turned off” for colonization and transmission to occur. The library will be screened for disrupted gene mutants and then for activated gene mutants.

The insect vectors used for the screen in this study will be GWSS and BGSS. To screen for those mutations that restore transmissibility to the *rpfF* mutant, the gene libraries will be injected into 10 healthy plants of *Vitis vinifera* cultivar Cabernet Sauvignon. The mutant library will be mechanically inoculated into the grape plants. The plants will be kept in the greenhouse and will be monitored periodically for the presence of PD symptoms. Five plants will contain the disrupting transposon mutagenesis libraries and the other five will contain the activating transposon mutagenesis libraries. The source plants will be kept in the greenhouse to allow the strain to reproduce and grow. Group of 100 BGSS, non infective for *Xf* will be placed on the source plants to permit acquisition. The insect vectors BGSS and *Homalodisca coagulata* (GWSS) will feed on the plants containing the mutant collections.

Half of the vectors will be analyzed by bacterial culturing for the presence of *Xf* mutants 14 days after removal from infested plants. The bacteria recovered from these insects will represent mutants that have regained the ability to colonize insect foreguts. Strain KLN61 was only rarely recovered from insects at 7 days, and at 14 days it is expected that that number will be reduced to zero. This will be tested prior to the screen.

The other half of the vectors will be transferred to new healthy plants, and after 6 to 8 weeks, the plants will be cultured for the presence of bacteria. The bacteria recovered from those plants represent those mutants that have regained transmissibility.

OBJECTIVES

1. Create a library of *Xf* mutants in the *rpfF* mutant background using a disrupting transposon mutagenesis to block gene function.
2. Create a library of *Xf* mutants in the *rpfF* mutant background using an activating transposon mutagenesis to enhance gene function.
3. Design and carry out a screen for mutations in *Xf* that restore transmissibility in the non-transmissible *rpfF* mutant.
4. Identify the genes affected in the screen. These will be genes that are important for transmission of Pierce’s disease (PD) by insect vectors.

RESULTS AND CONCLUSIONS

Generating the mutant libraries is the main focus of the research during this first year. We have constructed an *rpfF* knockout by allelic exchange mutagenesis using a StrepR marker carried on pKLN121 plasmid. A total of 200 cfu were yield after the transformation and transferred on new media plates containing a concentration of 100ug/ml spectinomycin and 50ug/ml streptomycin as selective markers. This new StrepR strain allows compatibility with the transposome system, which confers KanR allowing us to proceed with the transposome-mediate mutagenesis technique soon. The transposome approach would permit us to rapidly construct a library of mutants in the *rpfF* background. It has been shown that transposome-mediated mutagenesis was successful in Kirkpatrick’s laboratory when applied on *Xf* (Guilhabert et al, 2001).

To construct a mutant library in the *rpfF* mutant background gives an important advantage to this project. A secondary mutation on *rpfF* could short-circuit the need for *rpfF* in transmission, using other important genes involved in the process and restore transmissibility of the mutant strain.
To determine what genes were affected that resulted in restored transmission, we will clone and sequence the DNA flanking the transposon using standard protocols for determining genomic DNA sequence flanking insertion DNA. The identity of these genes may enable us to grasp key features of the bacterial mechanism driving transmission. For example, we may find that certain adhesins are required for attachment to the foregut if activating transposons near adhesin genes restore transmissibility.

REFERENCES

FUNDING AGENCIES
Funding for this project was provided by the CDFA Pierce’s Disease and Glassy-winged Sharpshooter Board.