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INTRODUCTION 
Current approaches to understanding the progression of Pierce’s disease are limited by the lack of genetic techniques that can 
be used to study the biology of Xylella fastidiosa (Xf).  In particular, extrachromosomal elements, such as plasmids, having 
long-term stability in Xf when grown in lab cultures or en planta, have not yet been satisfactorily developed.  We will 
develop vectors that exhibit stable maintenance by Xf by adapting previously described genetic and microbiological 
techniques.  Our particular research efforts will focus on taking advantage of a well-studied bacteriological phenomenon 
called plasmid addiction (2, 4, 10).  The major mechanistic principle of plasmid addiction is that the plasmid carries a genetic 
trait that the host bacterium requires for viability.  The trait does not affect the metabolic properties of the bacterium nor does 
it affect reproduction.  However, loss of the plasmid-encoded trait is a lethal event, so by definition plasmid addiction ensures 
vector stability.  In addition, we will systematically evaluate other genetic mechanisms for increasing plasmid stability 
including multimer resolution and active partitioning systems.  Finally, we will examine the stability of each of the newly 
developed vectors for Xf in vitro and en planta.  The results of this analysis will allow us to construct one or more stable 
plasmid vectors that can be used by all researchers using genetic approaches to develop methods that limit Xf-related 
diseases. 
 
Xylella fastidiosa is a Gram-negative, endophytic bacterium, which is responsible for a number of economically important 
plant diseases (for recent reviews, see (5, 7, 8)).  Diseases that are important to the California agricultural economy include 
Pierce’s disease of grapevine, almond leaf scorch, alfalfa dwarf, and oleander leaf scorch.  Some strains of Xf, such as the 
Pierce’s disease strains, have very wide host ranges and are capable of colonizing the xylem of widely divergent plant 
species.  In many plant species, infection by Xf does not provoke symptoms or noticeable distress.  However, the colonization 
of certain plants, such as grapevines, leads to the development of disease symptoms and of plant decline.  Although the 
specific details of the disease process are not fully understood, it is known that Xf forms a biofilm within xylem vessels that 
has a major impact on the movement of sap within the xylem tissue.  Disease symptoms seem to be dependent on the rate and 
extent of colonization of the xylem tissue by Xf.  Some of the symptoms observed in infected grapevines include leaf 
marginal necrosis, severe leaf scorch, and dieback. 
 
Another important aspect of the disease cycle involves the insect vector.  Xf is transmitted from plant to plant by xylem-
feeding insects including the glassy-winged sharpshooter (5, 7, 8).  The insect vectors acquire the bacterium by feeding on 
infected plants.  Since the Pierce’s disease strain can colonize numerous plant species, the source of inoculum can be infected 
grapevines or symptomless plants present in the riparian habitats surrounding the vineyard.  In vectors showing the highest 
transmission efficiencies, Xf is present as a polar biofilm in the insect foregut and is transmitted to uninfected plants during 
subsequent feeding events.  In susceptible plants, efficient transmission of Xf occurs at low bacterial cell numbers (<100 
cultivable cells per insect head). 
 
Thus, an important feature of the Xf infectious cycle is the ability of this pathogen to colonize and interact with the xylem 
tissue of plants and the foregut of insect vectors.  Successful colonization of these hosts is dependent on the ability of Xf to 
subvert host defense networks and to acquire essential nutrients.  To better understand how Xf survives in and interacts with 
its hosts, many research laboratories have been working to identify genes important for virulence and nutrient acquisition.  
However, rapid progress in this area is affected by the lack of genetic and molecular tools necessary to investigate the 
contribution of Xf genes to the infection process.  One extremely important tool that is needed to advance these studies is a 
plasmid that is maintained by Xf throughout the infectious cycle.  The goal of our project is to develop this type of plasmid. 
Plasmid-addiction systems consist of a pair of genes that specify two components: a stable toxin and an unstable antidote (for 
recent reviews, see (2, 4, 10).  When a bacterium looses the plasmid harboring one of these addiction systems, the cured cells 
loose the ability to produce the unstable antidote and, as a result, the lethal effect of the stable toxin kills the bacterium.  
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Thus, to remain alive each living bacterium in a sample must retain the plasmid to continue producing antidote.  We will test 
the two different types of addiction modules that have been identified in bacteria.  The first type of addiction system consists 
of a toxin that is encoded by a stable mRNA, but expression of the toxin is limited by the antidote, which is a small unstable 
antisense RNA molecule that blocks mRNA translation.  The antisense mRNA antidote is produced as long as the plasmid is 
retained.  Both the hok/sok system of plasmid R1 and the pnd locus of plasmid R483 utilize this mechanism of establishing 
addiction.  Inclusion of the hok/sok system has been shown to successfully stabilize engineered plasmids in divergent species 
of bacteria including Escherichia coli, Salmonella typhi, Pseudomonas putida, and Serratia marcescens (3). 
 
The second type of addition system consists of a stable protein toxin and an unstable antitoxin protein.  Similar to the 
previous example, antitoxin is produced as long as the plasmid is retained.  One of the best characterized of this type of 
addiction system is the parDE system from the broad-host range plasmid RK2 (also called RP4).  Addition of a region of 
RK2, which includes the parDE system, to a poorly maintained plasmid has been shown to enhance stability of a wide range 
of bacteria such as Alcaligenes eutrophus, Alcaligenes latus, Azotobacter chroococcum, Klebsiella pneumoniae, 
Pseudomonas aeruginosa, P. putida, and E. coli (1, 9).  Interestingly, placing more than one type of plasmid addiction 
module onto the same plasmid provides an additive effect on plasmid stability (6).  Thus we will also evaluate whether 
placing the two different types of plasmid addition system leads to additional plasmid stability in Xf. 
 
OBJECTIVES 
1. Develop a stable plasmid vector for Xf. 

A. Evaluate the potential of various plasmid addiction systems for the ability to convert plasmids known to replicate in 
Xf into stable vectors.  

B. Evaluate how plasmid maintenance by Xf is affected by other genetic mechanisms known to affect plasmid stability, 
such as systems for multimer resolution and active partitioning systems. 

2. Evaluate the stability of the newly developed plasmid vectors when propagated in X. fastidiosa en planta. 
 
RESULTS 
This report summarizes the goals of a new project focused on constructing a stable plasmid vector to aid genetically based 
studies of Xylella fastidiosa. 
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