Project Leader:

Thomas M. Perring Dept. of Entomology University of California Riverside, CA 92521

Cooperators:

Carmen Gispert

Riverside County Indio, CA 92201

Rayda K. Krell Dept. of Entomology University of California Riverside, CA 92521

Viticulture Farm Advisor UC Cooperative Extension Charles A. Farrar Dept. of Entomology University of California Riverside, CA 92521 Yong-Lak Park Dept. of Entomology University of California Riverside, CA 92521

Reporting Period: The results reported here are from work conducted from July 1, 2003 to October 9, 2004.

ABSTRACT

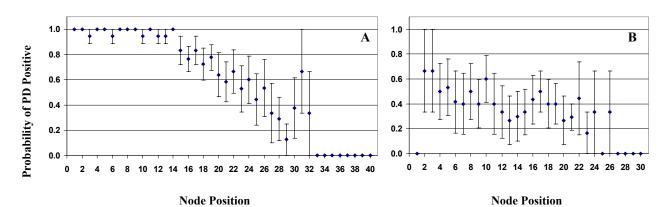
Monitoring grapevines for Pierce's disease (PD) is an important component of disease management and epidemiology research. Currently, there are no guidelines for how to choose plant tissue from grapevines for detecting diseased vines. This study was initiated to develop criteria to increase the likelihood of detecting grapevines infected with PD. Grapevines naturally infected with PD were identified from vineyards in the Coachella Valley and Temecula, California. Grapevine canes were removed from three vineyards with three different grape varieties: Perlette, Superior Seedless, and Chardonnay. The probability of detecting a PD-positive cane was greater in petioles tested from basal portions of canes. No differences were found between healthy and PD-infected canes in internodal distance, petiole weight, petiole length, or the number of leaves occurring at branches on canes. In preliminary observations, 9.5% of petioles from PD-infected vines were PD-positive, but had asymptomatic leaves and 16.1% of petioles were PD-negative, but had symptomatic leaves. Healthy vines had 16.7% of petioles with symptomatic leaves that were PD-negative. Symptoms were more apparent on leaves from basal cane portions and asymptomatic PD-infected petioles were more common on distal cane portions. Image analysis to confirm these results is in progress.

INTRODUCTION

A major component of Pierce's disease (PD) research in California has been grapevine sampling to monitor PD incidence in vineyards. Identification of PD-infected vines is important for management and investigating disease epidemiology. University of California guidelines for management suggest removal of chronically infected vines to reduce the possibility of secondary disease spread and increase vineyard productivity by replanting with healthy vines (Varela et al. 2001). Relatively new programs in Kern County (Hashim et al. 2003) and the Coachella Valley (Perring et al. 2003) have been implemented to monitor PD in areas where it had been thought to be uncommon. Most PD monitoring programs have been based on preliminary identification of infected vines based on PD symptoms (Hashim et al. 2003, Perring et al. 2003). Unfortunately, PD symptoms can be similar to other grape diseases and nutrient deficiencies (Varela et al. 2001) and diseased vines may be asymptomatic early in disease progression. To definitively identify infected vines, plant tissue should be tested by a reliable diagnostic method such as culturing, enzyme-linked immunosorbent assay (ELISA), or polymerase chain reaction. Protocols for sampling to detect infected vines in vineyards are needed to reliably detect PD. A first step to preparing such a protocol is determination of the best approach for choosing plant tissue for diagnostic tests.

OBJECTIVES

- 1. Determine the probability of detecting a PD positive vine based on petiole location on individual grape canes.
- 2. Compare the morphology of healthy and PD-infected grape canes for potential differences that could aid in identifying infected vines.
- 3. Evaluate the effectiveness of using PD foliar symptoms for choosing plant tissue for diagnostic tests.


RESULTS

Naturally-infected grapevines with PD were identified from two vineyards in the Coachella Valley and one vineyard in Temecula. Varieties at the three respective locations were Perlette (3 vines), Superior Seedless (6 vines), and Chardonnay (5 vines). Three canes from each vine were removed. Each leaf from the canes was photographed, and intact individual petioles were weighed and tested for PD by ELISA. Additionally, in the Coachella Valley three canes were harvested from

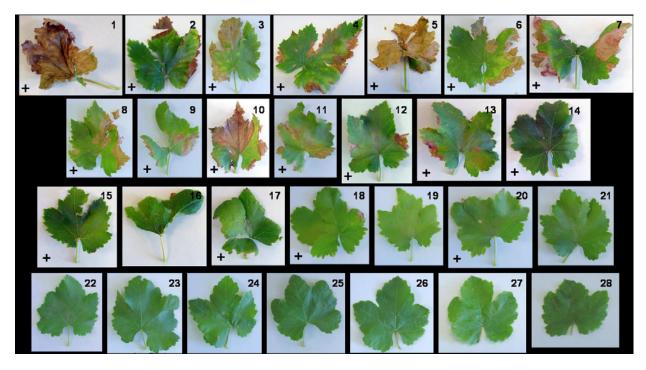
two non-infested vines of each variety. On all canes from the Coachella Valley, internodal distance and petiole weight were measured and the number of leaves occurring at cane branches was counted.

Probability of PD Detection Based on Petiole Location

The probability of detecting PD from an individual petiole was greatest in basal portions of the cane (Figure 1). This result follows the suggestion of Hill and Purcell (1995) that the newest growth would not likely contain bacteria because of the incubation time required for spread. Our result is likely most applicable to chronic infections and this has been noted by others (Feil et al. 2003), but not presented by our method of examining infection on a node basis along the length of entire canes.

Figure 1. Probability (\pm SE) of positive PD detection at each node position (1 is most basal) for (A) Superior Seedless (*n*=6) vines and (B) Chardonnay vines (*n*=5).

Morphology of Healthy and PD-infected Vines


We did not detect any differences in Perlette (Λ =0.57; df=4, 11; P>0.05; MANOVA) or Superior Seedless (Λ =0.89; df=4, 11; P>0.05; MANOVA) varieties in internodal distance, petiole weight, petiole length, or number of leaves branching off of canes between healthy and infected canes. We measured these factors with the intent to identify a morphological feature that could aid in identifying infected vines, but no differences helpful for this purpose were found.

Effectiveness of PD Symptoms for Sampling

We photographed each leaf from each cane to evaluate the reliability of symptoms for use in identifying PD infected vines. We have begun to examine the visual symptoms in relation to PD infection and will use image analysis to quantify foliar symptoms. In preliminary observations, 9.5% of petioles from PD-infected vines were PD-positive and had asymptomatic leaves, and 16.1% of petioles were PD-negative, but had symptomatic leaves. Healthy vines had 16.7% of petioles with symptomatic leaves that were PD-negative. Generally, symptoms were more severe in basal portions of canes and the likelihood of finding an asymptomatic positive petiole was greater on distal portions of canes (Figure 2).

CONCLUSIONS

- Samples taken from basal portions of grapevine canes were more likely to yield an ELISA positive result. We believe this result applies primarily to chronically infected vines.
- We did not discover cane morphological differences between healthy and PD-infected vines that could be useful in detecting PD infected vines.
- We are in the process of evaluating the relationship between PD foliar symptoms and PD infection and have observed that the likelihood of a PD symptomatic leaf being negative for PD was greater than the likelihood of a PD asymptomatic leaf being positive for PD. Also, distal portions of canes were more likely to be asymptomatic when infected with PD.
- Based on the potential for choosing symptomatic leaves that are PD-negative, we suggest taking petiole samples for PD diagnostic tests from basal portions of grape canes to increase the likelihood of detecting PD positive vines.

Figure 2. Individual leaves from a single Superior Seedless cane. Number indicates node position with 1 being the most basal node. The plus symbol indicates that the petiole from the leaf tested positive for PD by ELISA.

REFERENCES

- Feil, H., W. S. Feil, and A. H. Purcell. 2003. Effects of date of inoculation on the within-plant movement of *Xylella fastidiosa* and persistence of Pierce's disease within field grapevines. Phytopathology 93:244-251.
- Hashim, J., B. L. Hill, M. Kelly, D. Shari, and A. H. Purcell. 2003. Monitoring and control measures for Pierce's disease in Kern county and epidemiological assessments of Pierce's disease, pp. 95-98. *In* Proceedings, Pierce's Disease Research Symposium, 8-11 Dec. 2003, Coronado, CA. California Department of Food and Agriculture, Sacramento, CA.
- Hill, B. L. and A. H. Purcell. 1995. Multiplication and movement of *Xylella fastidiosa* within grapevine and four other plants. Phytopathology 85:1368-1372.
- Perring, T. M., C. Gispert, C. A. Farrar, and R. Krell. 2003. Epidemiology of Pierce's disease in the Coachella Valley, pp. 107-110. *In* Proceedings, Pierce's Disease Research Symposium, 8-11 Dec. 2003, Coronado, CA. California Department of Food and Agriculture, Sacramento CA.
- Varela, L. G., R. J. Smith, and P. A. Phillips. 2001. Pierce's Disease. University of California, Agriculture and Natural Resources Publication No. 21600.

FUNDING AGENCIES

This project has not been funded directly, but has been conducted in conjunction with projects funded by the University of California Pierce's Disease Grant Program.