DEVELOPMENT OF A FIELD SAMPLING PLAN FOR GLASSY-WINGED SHARPSHOOTER-VECTORED PIERCE'S DISEASE

Project Leaders:

Thomas M. Perring Dept. of Entomology University of California Riverside, CA 92521

Cooperators:

Yong-Lak Park Dept. of Entomology University of California Riverside, CA 92521

Murry P. Pryor Cooperative Extension University of California Bakersfield, CA 93307 Jennifer Hashim Viticulture Farm Advisor UC Cooperative Extension Bakersfield, CA 93307

Charles A. Farrar Dept. of Entomology University of California Riverside, CA 92521

Barry Hill CDFA Sacramento, CA 95814 Carmen Gispert Viticulture Farm Advisor UC Cooperative Extension Indio, CA 92201

Rayda K. Krell Dept. of Entomology University of California Riverside, CA 92521

Maggi Kelly Environmental Sciences, Policy, & Mgmt. Dept. University of California Berkeley, CA 94720

Reporting Period: The results reported here are from work conducted from July 1, 2004 to October 8, 2004.

ASBTRACT

Determining the location of grapevines infected with Pierce's disease (PD) in vineyards has been a major question for growers and researchers. Field census has been the only reliable way to identify vines infected with PD in the vineyard. Censuses, however, are difficult when PD incidence is high. In these situations, we need a sampling program that accounts for the spatial structure and pattern of PD in the vineyard. To characterize the spatial distribution patterns of PD, census data from Kern County vineyards were analyzed with geostatistics. These analyses showed that dispersion of PD varied with the amount of PD infection, and with vineyard proximity to citrus. Based on these analyses, our goal is to develop a sequential sampling program for detecting PD in vineyards.

INTRODUCTION

A common sampling technique to detect the presence of PD in vineyards is to visually examine vines, remove symptomatic leaves from possible infected vines, and confirm the presence of PD with enzyme-linked immunosorbent assay (ELISA). Locating vines infected with PD in a vineyard is required for current PD management, and the only reliable method for locating PD-infected vines is to examine every vine in the vineyard. Such a census was used for a county-level PD survey and provided a cost-effective method (< \$5 per acre) for identifying infected vines in vineyards when PD infection was very low (Hashim and Hill 2003). As the infection level in a vineyard exceeds 1%, it becomes more difficult to observe and sample every symptomatic vine. It is especially difficult to distinguish PD symptoms when other stress factors, such as drought and salt damage, exist in vineyards. Such difficulties result in high sampling costs because many samples must be taken and confirmed with ELISA. Thus, the development of a cost-effective sampling program appropriate for growers' and researchers' needs and skills is necessary for PD monitoring and management.

By definition, a sampling program employs all available sampling techniques to collect samples that are used to make estimates of population parameters (Pedigo 1994). In our case, we need to estimate the distribution and abundance of PD-infected vines. The sampling techniques consist of the actual equipment and methodologies by which samples are collected (Pedigo 2002). Sampling programs, on the other hand, direct how often and how many samples are to be taken, the spatial pattern to obtain sample units, and the timing of sampling (Pedigo 1994). Sampling programs often include binomial sampling or sequential sampling that makes sampling more cost effective and convenient. However, in PD sampling, such sampling plans cannot be directly adopted because the purpose of PD sampling is not only to estimate the incidence of PD but also to locate individual vines infected with PD. Thus, the sampling program for PD should be spatially oriented to identify the locations of the individual vines infected with PD.

One way to locate infected vines without a census is to use sampling grids that match the spatial structure and patterns of PD distribution. To develop these sampling grids three facts should be known: 1) the spatial structure and patterns of PD distribution, 2) the relationship between PD distribution and the percentage incidence of PD, and 3) the relationship between PD distribution and environmental factors affecting the incidence and spatial distribution of PD. Such knowledge can be obtained with current technology and methods such as the global positioning system (GPS) to locate sampling grids, the geographic information system (GIS) to generate geo-referenced data, and geostatistics analyze spatial data.

OBJECTIVES

The goal of this project is to develop a sequential grid-sampling program for PD that can characterize the spatial distribution and determine the location of PD based on the spatial structures and patterns of PD distribution in the vineyard. The objectives of this project include:

- 1. Characterization of the spatial distribution of PD in vineyards.
- 2. Development of a sequential grid-sampling program.
- 3. Validation and optimization of the sampling program with cost analysis and sensitivity analysis.

RESULTS AND CONCLUSIONS

We have conducted censuses of Kern County vineyards for the past four growing seasons (2001-2004). This report is focused on the 2002 data. Census data were converted into a GIS database and analyzed with geostatistics. Geostatistics is a set of statistical procedures that can characterize distribution (called *semivariogram modeling*) and generate distribution maps (called *kriging*). The semivariograms show the spatial pattern (e.g., no structure, uniform, trend, random, or clumped) and the structure (e.g., the size of aggregation, spatial correlation, and spatial variability) of PD distributions. Kriging was used to generate distribution maps of the probabilities of PD infections throughout the vineyard.

Census result

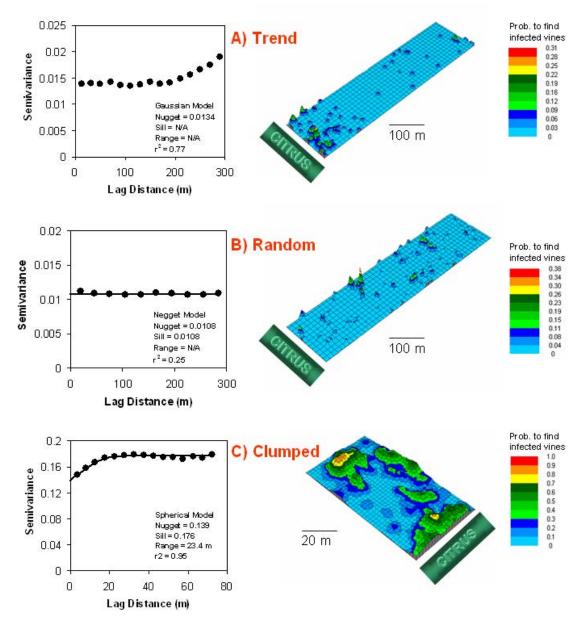
We made a census of 215 vineyards in 2002. A total of 135 vineyards were infected with PD. Only seven vineyards had more than 0.1% PD infection, and those vineyards were located adjacent to citrus groves indicating that citrus affects the incidence and severity of PD in nearby grapes. This result is consistent with patterns of PD found in Temecula (Perring et al. 2001). However, as in the Temecula study, proximity to citrus did not affect PD distribution in all Kern County vineyards.

Spatial distribution of PD in vineyards

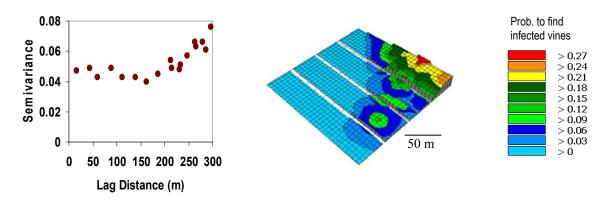
Determining distribution patterns (e.g., no structure, uniform, trend, random, clumped) is the first step for developing sequential grid-sampling plans for fields in which we do not know the location of infected vines. Geostatistical analyses showed that the distribution pattern of PD could be categorized according to the incidence of PD in each vineyard. When the infection was < 0.1%, there was no spatial structure to the location of infected vines. Vineyards that had between 0.1% and 1% infection showed a distribution pattern of a trend from areas of high infection to low infection (Figure 1A). This type of distribution pattern (i.e. trend) also was found in the Coachella Valley in a field that had a similar proportion of infected vines (Figure 2). When the infection was between 1% and 5%, the pattern of disease was random (Figure 1B), and a clumped distribution existed when infection rate was > 5.0% (Figure 1C).

Our work suggests that knowing the percentage of PD infection and the location of vineyards relative to citrus can predict the distribution pattern of PD in the vineyard. Such inferences from the geostatistical analysis can be used to develop a spatiallyoriented sampling program with sampling grids. The development of this sequential grid-sampling program provides three fundamental roles in PD research and management. First, it enables growers to locate vines infected with PD in the vineyard when the proportion of infected vines precludes a vineyard census. Second, using with the geospatial and geostatistical methodologies of the sampling program, growers will be able to identify problem areas in their vineyards. Third, the sampling program provides a method for standardizing PD sampling statewide. Progress in these areas, i.e. locating individual vines, identifying problem areas in a vineyard, and standardizing areawide monitoring, not only will help growers make informed decisions in their own vineyards, but will assist researchers trying to understand the epidemiology of GWSS-vectored PD in California.

REFERENCES


- Hashim, J. & Hill, B.L. 2003. Monitoring and control measures for Pierce's disease in Kern County, and epidemiological assessment of Pierce's disease, pp. 95-98. *In* CDFA (ed.), Proceedings of Pierce's disease research symposium 2003, Coronado, CA.
- Pedigo, L.P. 1994. Introduction to sampling arthropod populations, pp. 1-14. *In* Pedigo L.P. and Buntin G.D. (eds.) Handbook of sampling methods for arthropods in agriculture. CRC Press, Boca Raton, FL.

Pedigo, L.P. 2002. Entomology and pest management, 4th ed. Prentice Hall, Upper Saddle River, NJ.


Perring, T.M., Farrar, C.A. & Blua M.J. 2001. Proximity to citrus influences Pierce's disease in the Temecula valley. Cal. Ag. 55:13-18.

FUNDING AGENCIES

Funding for this project was provided by the University of California Pierce's Disease Grant Program.

Figure 1. Three main dispersion patterns of PD found in Kern County in 2002. (A) A "trend" spatial pattern from areas of high infection to low infection existed when the infection was between 0.1% and 1.0%. (B) A "random" distribution pattern existed, when the infection was between 1% and 5%. (C) A "clumped" dispersion pattern existed when PD infection was > 5%. When infection was < 0.1% there were no detectable spatial structures.

Figure 2. Semivariogram and dispersion map for PD in a Coachella Valley vineyard. The semivariogram indicates a trend dispersion pattern. Within this trend, a random dispersion pattern exists up to a lag distance of 200m. This trend from high to low PD is easily visualized in the dispersion map.