DEVELOPMENT OF MOLECULAR DIAGNOSTIC MARKERS FOR *HOMALODISCA*SHARPSHOOTERS PRESENT IN CALIFORNIA TO AID IN THE IDENTIFICATION OF KEY PREDATORS Project Leaders: Lesse H. de León Lames Hagler Valerie Fournier & Kent Dane Walker A. Jone Jesse H. de León James Hagler Valerie Fournier & Kent Daane Walker A. Jones USDA, ARS USDA, ARS Division of Insect Biology USDA, ARS BIRU Western Cotton Res. Lab University of California BIRU Weslaco, Texas 78596 Phoenix, AZ 85040 Berkeley, CA 94720 Weslaco, TX 78596 **Reporting period:** The results reported here are from work conducted from fiscal year 2003 to fiscal year 2004. #### ABSTRACT The aim of the present study was to develop molecular diagnostic markers to identify key predators of *Homalodisca* sharpshooter species present in California, *H. coagulata* (Glassy-winged Sharpshooter, GWSS) and *H. liturata* (Smoke-tree Sharpshooter, STSS). RAPD-PCR DNA fingerprinting of several sharpshooter species identified specific bands that were excised, sequenced, and SCAR (Sequenced Characterized Amplified Region) markers were designed. The results demonstrated that both GWSS- and *Homalodisca*-specific markers were specific toward their targets. The GWSS-specific markers amplified only GWSS and STSS. The sensitivity limits for both marker sets was at 50 pg of DNA. The mitochondrial cytochrome oxidase subunit gene II (COII)-specific markers that were developed were each specific for GWSS and *Homalodisca* sharpshooters. The development of diagnostic markers designed toward *Homadisca* sharpshooters present in California should aid in finding key predators and therefore enhance biological control efforts against these sharpshooters. ## INTRODUCTION The Glassy-winged Sharpshooter, *Homalodisca coagulata* (Say) (Homoptera: Cicadellidae), is a large xylem feeding leafhopper that is a serious pest because it vectors a strain of *Xylella fastidiosa* (Wells), a bacterium that causes Pierce's disease in grapevines (*Vitis vinifera* and *V. labrusca*) (Hopkins and Mollenbauer 1973). A biological control program is currently in progress in California against *H. coagulata*. Effective control of GWSS will require an area-wide pest management approach. A major component of such an approach is the exploitation of the pest's natural enemies, which, when utilized to their greatest potential, can increase the effectiveness of other control tactics. Unfortunately, very little is known about GWSS natural enemies, this is especially true for their predators (Triapitsyn *et al.* 1998). Direct visual field observations of predation are difficult to obtain and historically, the study of insect predation has relied mainly on inexact and indirect techniques for measurement and analysis. Presently, Hagler and Naranjo (1997) and Hagler *et al.* (1991) have had success in developing monoclonal antibodies and detecting prey in predator gut contents by enzyme linked immunoassays (ELISA). Recently, other methods have been developed that allow for the detection of prey in predator gut contents. These molecular methods include, Sequence Characterized Amplified Region (SCAR), where RAPD-PCR species-specific bands are excised from gels, sequenced, and primers are designed toward those DNA fragments (Agusti *et al.* 1999; Agusti *et al.* 2000) and targeting genes that are present in the cell in high copy number, such as, mitochondrial genes (COI and COII) and Internal Transcribed Spacer regions (ITS1) (Agusti *et al.* 2003; Chen *et al.* 2000; Symondson 2002). #### **OBJECTIVE** Develop molecular diagnostic markers for *Homalodisca* sharpshooter species (GWSS and STSS) found in California in order to identify key predators. # RESULTS AND CONCLUSIONS # GWSS-specific SCAR (5/7) Markers RAPD-PCR DNA fingerprinting was performed with several sharpshooter species and *Homalodisca*-specific bands were excised, sequenced, and primers designed (SCAR markers). Figure 1A demonstrates that GWSS-specific SCAR (5/7) markers were highly specific with no amplification of any other sharpshooter species or predators. The GWSS-specific markers were also able to detect GWSS eggs in predator gut contents (Figure 1B). The sensitivity of the SCAR marker set was tested by varying the amount GWSS DNA (0.1 to 3.2 ng) (Figure 2). In this experiment, the limit of sensitivity was at 100 pg, but later experiments showed the detection limit at 50 pg (not shown). Figure 1. RAPD-PCR DNA fingerprinting was performed with the following sharpshooters: *Homalodisca liturata* (HI); *Graphocephala atropuncta* [blue-green (BG)]; *H. coagulata* (Hc); *Carneocephala fulgida* [red-headed (RH)]; *Draeculacephala minerva* [green (G)]; *Oncometopia nigricans* (On); and *H. insolita* (Hi). Amplification products/bands unique to GWSS were excised, sequenced, and primers (SCAR markers) were designed to amplify a 302-bp fragment. A). Specificity of GWSS-specific SCAR-5/7 markers. L, lacewing larvae (*Chrysoperla carnea*); E, earwig (*Forficula auricularia*); and B, ground beetle (*Calosoma sp.*). B). Detection of GWSS in predator gut contents by SCAR-PCR assays. (-), negative control (no template); C, control (not fed on GWSS); S, sample (fed on GWSS). Lacewing and earwig fed on GWSS eggs and ground beetle fed on a GWSS adult. **Figure 2.** Sensitivity assay with GWSS-specific SCAR 5/7. GWSS DNA was varied from 0.1 to 3.2 ng, each point in quadruplicate (inset). The four determinations per point were averaged and plotted vs relative density of the SCAR bands. Since the highest amount of DNA (3.2 ng) did not fall within the linear portion of the curve (saturated) it was eliminated. **Figure 3.** California *Homalodisca* (GWSS/STSS)-specific SCAR 6/9 specificity assay. California *Homalodisca*-specific primers were designed toward a RAPD-PCR fragment. Refer to Figure 1 for assignments. **Figure 4.** SCAR 6/9 sensitivity assays with GWSS DNA (A) and STSS DNA (B). DNA ranged from 0.05 to 0.80 ng with each point in triplicate. The three determinations per point were averaged and plotted vs relative density of the SCAR bands. The highest amount of DNA (0.80 ng) was not in the linear portion of the curve (saturated), so it was eliminated from the analysis. **Figure 5.** SCAR-PCR (6/9) assays with predators (Lacewing, L1-10) that fed on GWSS eggs. Lanes: 1, Qiagen prep control plus GWSS DNA; 2, crude extract control plus GWSS DNA; 3, crude extract negative control (not fed); 4, Qiagen prep negative control (not fed); 5, GWSS DNA positive control. **Figure 6 (below).** California *Homalodisca* mitochondrial COII-specific primers. The mitochondrial COII genes of both GWSS and STSS were sequenced and both *Homalodisca*- and GWSS-specific primers were designed. Refer to fig. 1 for assignments. # Homalodisca (GWSS/STSS)-Specific SCAR (6/9) Markers Figure 3 shows the specificity of the *Homalodisca* markers, as seen only GWSS and STSS DNA is amplified with this marker set and no other sharpshooters or predators amplified. The sensitivity of this SCAR (6/9) marker set was tested with both GWSS (Figure 4A) and STSS (Figure 4B) DNA individually. The amount of DNA was varied from 0.05 to 0.80 ng. These experiments show the sensitivity limits with both GWSS and STSS DNA to be at 50 pg. The SCAR (6/9) marker set was tested with predators (Lacewings L1-12) that fed on GWSS eggs (Figure 5). At least 7 of the 12 specimens tested positive with this marker set. The assay system was tested for competition or interference of predator DNA with both Qiagen preps and crude DNA extracts. The DNA crude extract procedure was developed as a rapid method to assay hundreds of samples more efficiently. The results show that predator DNA does not compete or interfere with the SCAR-PCR assays. # Homalodisca and GWSS-specific Mitochondrial COII primers Mitochondrial DNA is present in hundreds or multiple copies within each cell (Chen *et al.* 2000; Symondson 2002). In order to increase the sensitivity of our diagnostic assays, the mtCOII genes of both GWSS and STSS were sequenced and both *Homalodisca*- and GWSS-specific primers were designed. Figure 6 demonstrates that both GWSS- (Figure 6A) and *Homalodisca*- (Figure 6B) specific primers were successful without amplifying any other sharpshooters or predators. #### REFERENCES - Agusti N, De Vicente MC, Gabarra R. 1999. Development of sequence amplified characterized region (SCAR) markers of *Helicoverpa armigera*: a new polymerase chain reaction-based technique for predator gut analysis. Molecular Ecology 8: 1467-1474. - Agusti N, De Vicente MC, Gabarra R. 2000. Developing SCAR markers to study predation on *Trialeurodes vaporariorum*. Insect Molecular Biology 9: 263-268. - Agusti N, Shayler SP, Harwood JD, Vaughan IP, Sunderland KD, Symondson WOC. 2003. Collembola as alternative prey sustaining spiders in arable ecosystems: prey detection withing predators using molecular markers. Molecular Ecology 12: 3467-3475. - Chen Y, Giles KL, Payton ME, Greenstone MH. 2000. Identifying key cereal aphid predators by molecular gut analysis. Molecular Ecology 9: 1887-1898. - de León JH, Jones WA. 2004. Detection of DNA polymorphisms in *Homalodisca coagulata* (Homoptera: Cicadellidae) by polymerase chain reaction-based DNA fingerprinting methods. *Annals of the Entomological Society of America* 97: 574-585 - Hagler JR, Naranjo SE. 1997. Measuring the sensitivity of an indirect predator gut content ELISA: Detectability of prey remains in relation to predator species, temperature, time, and meal size. Biological Control 9:112-119. - Hagler JR, Cohen AC, Enriquez FJ, Bradley-Dunlop D. 1991. An egg-specific monoclonal antibody to *Lygus hesperus*. Biological Control 1:75-80. - Hopkin, D L, Mollenhauer HH. 1973. Rickettsia-like bacterium associated with Pierce's disease of grapes. Science 179: 298-300 - Symondson WOC. 2002. Molecular identification of prey in predator diets. Molecular Ecology 11: 627-641. - Triapitsy S., Mizell RF, Bossart JL, Carlton CE . 1998. Egg parasitoids of *Homolodisca coagulata* (Homoptera: Cicadellidae). Florida Entomologist. 81: 241-243. ## **FUNDING AGENCIES** Funding for this project was provided by the USDA Agricultural Research Service.