REALIZED LIFETIME PARASITISM AND THE INFLUENCE OF BROCHOSOMES ON FIELD PARASITISM RATES OF GLASSY-WINGED SHARPSHOOTER EGG MASSES BY *GONATOCERUS ASHMEADI*

Project Leaders: Mark Hoddle Dept. of Entomology University of California Riverside, CA 92521

Cooperators: Robert Luck Dept. of Entomology University of California Riverside, CA 92521

Nic Irvin Dept. of Entomology University of California Riverside, CA 92521

Reporting period: The results reported here are from work conducted from July 2004 to October 2004.

ABSTRACT

INTRODUCTION

GWSS is an exotic pest in California having invaded and established in this state in the late 1980's. One potential reason for the inordinate numbers of GWSS in California compared to population densities in the pest's home range in southeastern USA is a lack of an efficient natural enemy fauna that has evolved to use GWSS as a resource. As part of a classical biological control program against GWSS, scientists with the CDFA and UCR have been prospecting for, importing into quarantine, and clearing for release mymarid egg parasitoids from the home range of GWSS for establishment in California. To date, two new parasitoid species have been established in CA, *Gonatocerus triguttatus* and *G. fasciatus*. It is too early to ascertain the impact on GWSS population growth that these two parasitoids will have. The self introduced *G. ashmeadi* (Vickerman et al., 2004) is the key natural enemy of GWSS egg masses in CA at present (Blua et al., 1999). Over summer, parasitism levels of GWSS are substantially lower (Triapitsyn and Phillips, 2000). Naturally occurring populations of *G. ashmeadi* in CA have been augmented with mass reared individuals from populations found in the southeastern USA and northeastern Mexico which encompasses the home range of GWSS (D. Morgan - CDFA, pers. comm. 2003).

Substantial laboratory work with *G. ashmeadi* has been conducted in an attempt to understand and parameterize basic aspects of this parasitoid's reproductive biology, and host selection behaviors. Irvin and Hoddle (2001) have evaluated oviposition preferences of *G. ashmeadi* when presented GWSS eggs of various ages. Interspecific competition between *G. ashmeadi* with *G. triguttatus* and *G. fasciatus* for GWSS egg masses of different ages has been assessed along with factors influencing the sex ratio of offspring (Hoddle and Irvin, 2002; 2003). The effect of resource provisioning and nutrient procurement on the longevity of *G. ashmeadi* has also been determined (Irvin unpublished data). Furthermore, the foraging efficacy of *G. ashmeadi* in simple and complex environments for scarce and abundant GWSS egg masses has also been completed and compared to similar data collected for *G. triguttatus* (Irvin unpublished data).

The effect of brochosomes on the foraging efficacy of *G. ashmeadi* has also been evaluated in the laboratory. Brochosomes are a chalky material produced by the malpighian tubules in many xylophagous cicadellid species (Rakitov, 1999; 2000; 2004). Brochosomes are excreted from specialized openings on the posterior of the abdomen and are collected and deposited by mated females on the forewings. During oviposition, females rub brochosomes off the forewings and deposit them on the tops of eggs masses (Hix, 2001). The adaptive significance of covering egg masses with brochosomes is uncertain (Rakitov,1999). Hix (2001) has suggested that brochosomes may protect GWSS eggs from desiccation, UV light, natural enemies (parasitoids, predators and pathogens); or they provide a signal to other female GWSS that leaves have already been oviposited in. We have investigated the effect of brochosome coverage of GWSS eggs is a major impediment to oviposition to *G. ashmeadi* when compared to conspecific parasitization efficiency of GWSS eggs with light or no brochosome coverage (Velema et al., 2004).

Studies currently funded by the CDFA to by conducted by this lab will look at: (1) laboratory-level fecundity rates of *G*. *ashmeadi* under varying temperature regimens; (2) field cage studies assessing interspecific competition between parasitoids released for the classical biological control of GWSS; (3) factors affecting sex ratio allocation during mass production of mymarid parasitoids; and (4) the effect of resource provisioning on parasitization rates and overwintering longevity of key mymarid parasitoids under field conditions. The work proposed in this grant will complement and support completed studies and work in progress.

Many factors act in concert to affect successful biological control. The GWSS-*Gonatocerus* system has benefited from intensive laboratory study to generate a basic understanding of factors influencing host selection and parasitism success. The

next step that is now required is to test hypotheses generated from lab studies in the field. Field level assessments will evaluate our understanding of the system under investigation, and consolidate interpretations needed to determine the most important aspect of the GWSS biological control program: "How effective are egg parasitoids at controlling GWSS in California?" To get to the crux of this issue we are asking two questions in this proposal: (1) How big an impact do individual female parasitoids have on GWSS population growth via parasitization of eggs, and (2) do biotic impediments such as brochosomes affect parasitization efficacy in the field? When these two questions are addressed together we will begin to develop a comprehensive understanding of the impacts parasitoids have at the field level and factors affecting parasitization success. This will allow us to form a much better understanding of what levels of control we can expect from mymarid egg parasitoids when different ecological conditions are prevailing in the field.

OBJECTIVES

This is a new proposal that was officially funded in July 2004. This project has two objectives aimed at determining the field level impact individual female *Gonatocerus ashmeadi* have on glassy-winged sharpshooter (GWSS) egg masses. These two research objectives are complimentary:

- 1. Measure real life time contributions of individual female parasitoids to parasitism of GWSS egg masses under field conditions. This research objective is high priority.
- 2. Determine the ecological significance of brochosome deposition on GWSS egg masses and its effect on parasitism rates by *G. ashmeadi* under field conditions.

RESULTS

This project has not commenced. There are two major reasons for this: (1) Recruitment of Dr. Nic Irvin as the post-graduate researcher for this program has been held up by the excessive time it has taken to process the required visas to employ her in the USA given her alien status. (2) Dr. Irvin will start working on this project in early March 2005 when GWSS populations begin to build again. It made no sense to employ Dr. Irvin earlier than this time as at the time of notification of successful visa application GWSS populations were declining in the field and there would be few reproductive adults and parasitoids to work with. We will be formally requesting a no cost extension for this project.

REFERENCES

- Blua, M.J., Phillips, P.A., and Redak, R.A. 1999. A new sharpshooter threatens both crops and ornamentals. Calif. Agric. 53: 22-25.
- Irvin, N. and Hoddle, M.S. 2001. Egg age preference and "window of susceptibility" of *Homalodisca coagulata* eggs to attack by *Gonatocerus ashmeadi* and *G. triguttatus*. Pierce's Disease Control Program. Symposium Proceedings, Pierce's Disaese Research Symposium, December 5-7, 2001. Coronado Island Marriott Resort. pp. 135-136.
- Hix, R.L. 2001. Egg-laying and brochosome production observed in glassy-winged sharpshooter. Calif. Agric. 55: 19-22. Hoddle M.S. and Irvin, N. 2002. Interspecific competition between *Gonatocerus ashmeadi* and *G. triguttatus* for glassy-

winged sharpshooter egg masses. Pierce's Disease Control Program. Symposium Proceedings, Pierce's Disaese Research Symposium, December 15-18, 2002. Coronado Island Marriott Resort. pp. 86-87.

- Hoddle, M.S. and Irvin, N. 2003. Interspecific competition between *Gonatocerus ashmeadi*, *G. triguttatus*, and *G. fasciatus* for glassy-winged sharpshooter egg masses. Pierce's Disease Control Program. Symposium Proceedings, Pierce's Disease Research Symposium, December 8-11, 2003. Coronado Island Marriott Resort. pp. 250-254.
- Rakitov, R.A. 1999. Secretory products of the malpighian tubules of Cicadellidae (Hemiptera: Membracoidea): an ultrastructural study. International Journal of Insect Morphol. Embryol. 28: 179-193.
- Rakitov, R.A. 2000. Secretion of brochosomes during the ontogenesis of a leafhooper. *Oncometopia orbona* (F.) (Insecta, Homoptera, Cicadellidae). Tissue & Cell 32: 28-39.
- Rakitov, R.A. 2004. Powdering of egg nests with brochosomes and related sexual dimorphism in leafhoppers (Hemiptera: Cicadellidae). Zool. J. Linn. Soc. 104: 353-381.
- Triapitsyn, S.V. and Phillips, P.A. 2000. First record of *Gonatocerus triguttatus* (Hymenoptera: Mymaridae) from eggs of Homalodisca coagulata (Homoptera: Cicadellidae) with notes on the distribution of the host. Florida Entomologist 83: 200-203.
- Velema H.P., Hoddle, M.S. Hemerik, L. and Luck, R.F. 2004. The influence of brochosomes on parasitisation efficiency of Gonatocerus ashmeadi (Girault) (Hymenoptera: Mymaridae), parasitising Homalodisca coagulata (Say) (Hemiptera: Cicadellidae) egg-masses. Ecol. Entom. Submitted
- Vickerman, D., Hoddle, M.S., Triapitsyn S. and Stouthamer, R. 2004. Species identity of geographically distinct populations of the glassy-winged sharpshooter parasitoid *Gonatocerus ashmeadi*: Morphology, DNA sequences and reproductive compatibility. Biol. Cont. *In Press*.

FUNDING AGENCIES

Funding for this project was provided by the CDFA Pierce's Disease and Glassy-winged Sharpshooter Board.