IDENTIFICATION OF MECHANISMS MEDIATING COLD THERAPY OF XYLELLA FASTIDIOSA-INFECTED GRAPEVINES

Project Leader: Bruce Kirkpatrick Dept. of Plant Pathology University of California-Davis Davis, 95616

Cooperator

Melody Meyer Dept. of Plant Pathology University of California-Davis Davis, 95616

Reporting Period: The results reported here are from work conducted from July 2004 to November 2004.

ABSTRACT

Preliminary xylem sap composition studies were conducted in February 2004 using Cabernet sauvignon and Pinot noir grapevines growing in Placerville (cold winter temperature) and UC Davis (warmer temperatures). The pH of xylem sap from both varieties was almost a full unit lower in vines grown in cold temperatures versus warm. A similar trend also occurred with sap osmolarity, however the differences were not as great. Because these vines were grown under different management practices and on different rootstocks these results must be considered preliminary. In 2004 we established four field sites in Shasta, Placer, Mendocino and Yolo counties to repeat these measurements on clonal vines that were grown in 5-gallon pots at University of California, Davis. One-half of the vines were inoculated with Xf while the other half is uninoculated controls. Sap will be collected from the vines during the late winter and pH, osomolarity, carbohydrates, organic acids and abscisic acid (ABA) will be measured and compared. The vines will be returned to University of California, Davis at bud break and observed for the development of PD symptoms and tested by PCR to determine if any of the vines were "cold cured" of their infection. Similar experiments using potted vines that will be exposed to defined cold temperature regimes in cold storage facilities located at University of California, Davis will be conducted in 2005. Proteins present in the collected xylem sap will be analyzed by PAGE and the identity of major or unique xylem sap proteins will be determined by sequencing them. Xf viability studies using buffers of various pHs, xylem sap from warm- and cold-treated vines will also be studied. The goal of this research is to understand the physiological/biochemical basis of cold therapy that was first documented by A.H. Purcell.

INTRODUCTION

The geographical distribution of Pierce's disease (PD) in North America is strongly associated with the severity of winter temperatures, i.e. PD does not occur in New York, the Pacific Northwest nor at high altitudes in S. Carolina, Texas and even California (Hopkins and Purcell, 2002). Sandy Purcell demonstrated that relatively brief exposures to sub-freezing temperatures can eliminate *Xylella fastidiosa* in some percentage of cold treated *V. vinifera* grapevines, however some of the coldest temperatures he used killed the vines (Purcell 1977, 1980). He also found that a higher percentage of vines that were moderately susceptible to PD such as Cabernet sauvignon, were cured by cold therapy treatments compared to susceptible varieties such as Pinot noir. Purcell's group also showed that whole, potted vines exposed to low temperatures had a higher rate of recovery than PD-affected, detached bud sticks exposed to the same cold temperatures (Feil, 2002). Clearly, some factor(s) that were expressed in the intact plant, but not in detached bud sticks, helped eliminate *Xf* from the plants. Our objective is to elucidate the physiological/biochemical basis that mediates cold therapy and to identify the physiological/biochemical factor(s) that occur or are expressed in cold treated vines that eliminate *Xf*. If such factor(s) are found, it may be possible to induce their expression under non-freezing temperatures and potentially provide a novel approach for managing PD.

OBJECTIVES

- 1. Develop an experimental, growth chamber temperature regime that can consistently cure Pierce's disease affected grapevines without causing unacceptable plant mortality.
- 2. Analyze chemical changes such as pH, osomolarity, total organic acids, proteins and other constituents that occur in the xylem sap of cold-treated versus non-treated susceptible and less susceptible *Vitis vinifera* varieties.
- 3. Assess the viability of cultured *X. fastidiosa* cells growing in media with varying pH and osomolarity and cells exposed to xylem sap extracted from cold- and non-treated grapevines.
- 4. Determine the effect of treating PD-affected grapevines with cold plant growth regulators, such as abscisic acid (ABA), as a possible therapy for PD.

RESULTS AND CONCLUSIONS

Objective 1

The same varieties used by Purcell (1977, 1980) and Feil (2002) in previous cold therapy studies, Pinot noir (PD-susceptible) and Cabernet sauvignon (moderately resistant to PD) grapevines grafted on 101-14 rootstock were inoculated with Xf in the spring of 2004 using a pinprick inoculation procedure (Hill and Purcell, 1995; Purcell and Saunders, 1999). The vines were grown in five gallon pots in a greenhouse using a nutrient-supplemented irrigation regime. Treatment vines were inoculated with the Stagg's Leap strain of *Xylella fastidiosa*, whereas control vines were inoculated with water. During late summer and fall, the plants were moved into a screen house in order to acclimatize them to decreasing temperatures. While in the screen

house, plants were watered by drip irrigation and supplemental fertilizer application until the first week of October 2004. Twelve weeks after inoculation, the plants were rated for symptom development.

During October/November, 2004, 11 inoculated and 11 controls of each variety (44 plants total) were transported to 3 sites that were selected because of their relatively cold winter temperatures, as well as University of California, Davis which was the control. Plot sites include: Fall River (Shasta County), University of California Hopland Research Station (Mendocino County), and University of California, Blodgett Forest Research Station (Placer County). Potted grapevines were planted in the ground to the top of the pot in order to maintain uniform soil type, prevent roots in the pots from exposure to abnormally cold temperatures, and to prevent the plants from falling over. Plants were irrigated as needed until rain provided adequate moisture for the vines. Vines will be allowed to undergo natural dormancy during the fall and experience ambient temperatures during the winter. Temperature, ETo, and other weather data for each plot are being monitored using CIMIS weather data (http://wwwcimis.water.ca.gov/cimis/data.jsp). This data, and previous temperature profiles at these sites, will be used to determine a growth chamber temperature regime that can consistently cure PD affected grapevines without causing unacceptable plant mortality. Additional grapevines, using the same varieties and inoculated as described above, but grown in 6 inches standard pots will be exposed to different temperature regimes in cold rooms located at the Department of Pomology, University of California, Davis during the winter/spring of 2005.

Objective 2

Preliminary work from Pinot noir and Cabernet sauvingnon field materials collected from Placer and Yolo counties showed some differences in xylem sap pH and osmolarity. These results were obtained from Pinot noir and Cabernet sauvingnon vines growing in one Placerville vineyard and at a vineyard at University of California Davis. Both varieties were grown in the same manner at each site, however management practices at the two sites were not identical. It is also important to note that the University of California Davis vines were grown on 5C rootstocks while the Placerville vines were not grown on rootstocks and that these vines were not the same clones. Dormant cuttings were collected in late February and xylem sap was extracted using a custom-made pressure bomb. Differences were noted in xylem sap pH, abscisic acid concentration, and osmolarity. These same parameters will be further examined in 2005 in the field sites and growth chamber experiments. Although only preliminary findings, we found that the pH of xylem sap collected in late February was lower, 5.37 for Pinot and 5.23 for Cabernet vines at the Placerville site (colder winter temperatures) than vines growing at University of California Davis, 6.35 and 6.06, respectively. Small differences in osmolarity were also noted in xylem sap from Placerville, 55.2 and 55.5, versus the osomolarity of xylem sap from Davis vines, 58.3 and 60.8 respectively. The significance and reproducibility of these differences needs to be confirmed this winter using the more controlled experimental units.

During the 2005 winter months, field grown and growth chamber plants will be sampled for potential changes in pH, osmolarity, total organic acids, proteins and other constituents that occur in xylem sap. Our hypothesis is that changes in xylem sap components in vines that undergo cold treatment may have significant effects on *Xf* viability. Previous research on several plant species has shown that a number of plant genes are expressed in response to freezing temperatures (reviewed by Thomashow, 1998). In some plants, these freeze-induced proteins are structurally related to proteins that plants produce in response to pathogens, i.e. pathogenesis-related proteins (Hon, et al. 1995; Kuwabara, et al, 2002). Thus it maybe possible that cold-stressed grapevines could produce proteins that are deleterious to *Xf*. To investigate this possibility, xylem sap will be expressed from cold-stressed and control vines using the pressure bomb, concentrated by freeze drying, and protein profiles determined by 1 and 2 dimensional polyacrylamide gel electrophoresis (PAGE). If unique proteins are found in the cold stressed plants these proteins will be cut from the gel, end terminally sequenced by the University of California Molecular Structure Facility and their sequences compared to others in the database. The potential effect of these proteins on *Xf* viability will be assessed as described in Objective 3.

Objective 3

We have been assessing the effect of many of the physical, physiological and biochemical parameters we determined in Objective 1 and 2 on Xf viability. We have been assessing the effect of pH and osmolarity on the viability of Xf cells *in vitro* using various buffers and media such as PD3 and new chemically defined media (Leite, et al., 2004). The liquid solutions used for these viability experiments included: water, extracted xylem sap, PD3, the Leite medium, HEPES, sodium and potassium phosphate buffers. In order to further examine these parameters, cultures of *X. fastidiosa* Stagg's Leap strain were grown at 28°C on PD3 for 11 days. Cells were scraped from the culture plates and suspended at concentrations of 1.5×10^7 bacteria per mL of liquid medium. One mL of the suspension was then placed into each 1.5 mL microcentrifuge tubes and placed at various temperatures. Samples were diluted and plated out onto PD3 and allowed to grow for seven days. After seven days, colonies were counted to determine the potential effect each treatment had on the viability of Xf cells. Results of these experiments indicate that X.f. can survive at -5°C for 8 weeks. At lower temperatures, our results were similar to those found by Feil (2002). Xf survived the best in HEPES and sodium phosphate buffers and the worse survival occurred in waters and xylem sap at -5° C. At -10 and -20° C Xf rapidly died in all liquid media tested.

We also adjusted the pH of potassium phosphate buffer to the values determined for cold-stressed and control xylem saps collected from Placerville and University of California, Davis vines described previously. Cultures of *X. fastidiosa* Stagg's Leap strain were again grown at 28°C on PD3 for 11 days. Cells were harvested from culture plates and suspended at

concentrations of 1.5×10^7 bacteria per mL of potassium phosphate buffer. One mL of suspension was then placed into each 1.5 mL microcentrifuge tubes and placed at -5°C. Samples were diluted and plated out onto PD3 and allowed to grow for seven days. After seven days colonies were counted to determine the effect of pH on the viability of the *Xf* cells. *Xf* survived the best in potassium phosphate at pH 6.6 and 6.8 and the poorest survival occurred at pH 5.0. There was significant variation between reps of these experiments so they are now being repeated; however it is interesting that these initial trends are consistent with the pH values of xylem saps extracted from Placerville, where PD is not know to occur, and saps from vines growing at Davis where *Xf* can overwinter in grapevines.

Objective 4

Previous research has shown that herbaceous and woody plants exposed to sub-lethal cold conditions have significantly elevated levels of plant hormones, such as abscisic acid (ABA), which induces the synthesis of a number of cold shock proteins (Bravo, et al., 1998; Thomashow, 1998). Preliminary studies, involving samples of Pinot noir and Cabernet sauvingnon field materials collected from Placer and Yolo counties in February, 2004, showed abscisic acid concentrations were lower in the Placerville, cold-exposed vines, that vines from Davis. ABA concentrations were lower in Pinot than Cabernet for both Placerville and Davis vines. Again, it will be important to verify these initial findings using vines grown under more controlled environments in growth chambers during 2005.

We will determine the concentration of ABA in cold-stressed and control vines growing both in the growth chamber using the temperature regimes determined in Objective 1 and in the field-grown plants in the four sites described in Objective 1. We will also determine the pH, osomolarity and protein profiles of xylem sap from ABA-treated vs. non-treated vines and assess the potential of this sap for anti-*Xf* activity.

During the spring, summer and fall, Cabernet and Pinot vines will be sprayed with 100uM solutions of ABA, a concentration that elicited cold-shock proteins at 23°C in winter wheat (Kuwabara, et. al 2002). Additional concentrations up to 500uM may also be evaluated if no response is noted at 100uM. The pH and osmolarity of xylem sap from the treated vines will be determined as described above. The concentration of ABA in the sap will be determined using a commercially available immunoassay that has a sensitivity of 0.02-0.5 picomole/0.1 mL (Plant Growth Regulator Immunoassay Detection Kits, Sigma Chemical Co.). Preliminary work has shown that ABA concentrations in grapevine xylem sap are detectable using this kit. Xylem sap proteins will be collected, concentrated and analyzed by 1 and 2 dimensional PAGE as previously described. Unique proteins expressed in ABA-treated vines will be removed from the gels and end terminally sequenced and analyzed as previously described.

REFERENCES

- Bravo, L.A., Zuniga, G.E., Alberdi, M., and Carcuera, L.S. 1998. The role of ABA in freezing tolerance and cold acclimation in barley. Physiol. Plant. 103: 17-23.
- Feil, H., 2002. Effect of sub-freezing temperature on the survival of *Xylella fastidiosa* in vitro and in plants. Ph.D. dissertation, University of California, Berkeley.
- Hill, B.L. and Purcell, A.H. 1995. Multiplication and movement of *Xylella fastidiosa* within grapevine and four other plants. Phytopathol. 85: 1368-1372.
- Kuwabara, C., Takezawa, D., Shimada, T., Hamada, T., Fujikawa, S., and Arakawa, K. 2002. Abscisic acid- and cold-induced thaumatin-like protein in winter wheat has an antifungal activity against snow mold, *Microdochium nivali*. Physiol. Plant. 115: 101-110.
- Purcell, A.H. 1977. Cold therapy of Pierce's disease grapevines. Plant Dis. Reptr. 61: 514-518.
- Purcell, A.H. 1980. Environmental therapy for Pierce's disease of grapevines. Plant Dis. 64: 388-390.
- Purcell, A.H. and Saunders, S.R. 1999. Fate of Pierce's disease strains of *Xylella fastidiosa* in common riparian plants in California. Plant Dis. 83: 825-830.
- Thomashow, M.F. 1998. Role of cold responsive genes in plant freezing tolerance. Plant Physiol. 118:1-7.

FUNDING AGENCIES

Funding for this project ws provided by the CDFA Pierce's Disease and Glass-winged Sharpshooter Board.