FIELD EVALUATION OF GRAPE ROOTSTOCK RESPONSE TO NATURAL INFECTION BY PIERCE'S DISEASE

Project Leaders: Jiang Lu and Zhongbo Ren Center for Viticulture and Small Fruit Research Florida A&M University Tallahassee, Florida 32317

Peter Cousins Plant Genetic Resources Unit, USDA, ARS New York State Agricultural Experiment Station Geneva, New York

Reporting Period: The results reported here are for work conducted from November 2, 2003 to October 31, 2004.

ABSTRACT

To understand the adaptation of grape rootstocks commonly used in major grape production areas worldwide to Florida, where Pierce's disease (PD) is the primary limiting factor in grape production, ten important grape rootstocks were cultivated at the experimental vineyard, Florida A&M University, Tallahassee, Florida. Disease resistance and symptoms and growing performance were evaluated. PD symptoms were scored in September and October 2002, 2003, and 2004, with leaf symptoms the basis of scoring. None of the grape rootstocks was completely resistant to PD and the severity of PD varied with rootstock cultivar. St George and Ramsey showed least PD symptoms. Freedom and 44-53 succumbed to PD by the 2004 rating period; of the surviving rootstocks, 3309C had the highest PD score. Overall vine survival, evaluated in 2002, 2003, and 2004, varied among the rootstocks. Based on the performance of ungrafted vines, St George and Ramsey are the most suitable rootstocks in this north Florida environment, where natural infection by PD is very high and vectors and inoculum are abundant.

INTRODUCTION

Rootstocks are used widely in viticulture to provide resistance against soil pests and pathogens and improve scion performance. Choice of rootstock depends on pest populations, soil, and growing conditions. The grape rootstocks in common use world wide are deployed primarily to provide phylloxera and nematode protection (Bouquet 1980, Einset and Pratt 1975, Winkler et al 1974). In contrast, Pierce's disease (PD), caused by gram-negative bacterium Xylella fastiosa (Xf), is the primary limiting factor of growing Euvitis grape in the southeast United States (Lu and Ren 2002, Chen et al 2001). Pierce (1905) reported that rootstock variety affected expression of "California vine disease" (now known as Pierce's disease) in grape. Grape rootstock trials in Mississippi showed a large effect of rootstock trial on vine longevity in a region recognized for high Pierce's disease pressure (Loomis 1965, 1952, Magoon and Magness 1937). In humid and hot regions of the United States, such as Florida, bunch grapes often are highly susceptible to pests and diseases (Olien and Hegwood 1990). When the Florida hybrid bunch grape cultivar Blanc du Bois was grafted on to muscadine, which is relatively tolerant or resistant to the bunch grape pests and diseases common in North America, the scion showed a reduction in both PD and anthracnose symptoms and fruiting improved (Ren and Lu 2002). Growing conditions in Florida are harsh-a successful rootstock for grape industry in that area must be tolerant to PD and adapted to the environment. Evaluation of rootstock performance and survival in Florida would provide useful information on rootstocks performance for humid tropical and subtropical environments, especially where PD is prevalent. Greenhouse screening has been used to investigate the PD resistance, tolerance, and susceptibility of grape cultivars. However, field screening is more applicable, since conditions closely match those in a commercial vineyard. When relying on natural infection in the vineyard, there is no need to inoculate vines or maintain colonies of Xf or insect vectors. Field screening is cheap, requires no specialized equipment and can be accomplished quickly, with symptom expression being used as the main criterion. Northern Florida is an ideal test environment due to heavy PD pressure, with abundant vectors, including glassy-winged sharpshooter, and inoculum, in contrast to many other locations, especially California, which demonstrate substantial cycling of PD incidence.

OBJECTIVES

1. Evaluate the response of grape rootstocks to natural field infection by Pierce's disease.

RESULTS AND CONCLUSIONS

Ten grape rootstocks (five replicates of two vines each, ten vines total per rootstock cultivar) were planted in the spring of 2001. Vines were bilaterally cordon trained and spur pruned. Pierce's disease (PD) symptoms were scored in 2002, 2003 and 2004, with symptoms on leaves assessed in a numerical scale from 0 to 5. For PD, 0 represented no symptoms, 1 = minor symptoms up to 15% of leaves with marginal necrosis (MN), 2 = 15-30% of leaves with MN, 3 = 30-50% of leaves with MN, 4 = 50-75% of leaves with MN, 5 = over 75% of leaves with MN or vine dead. Vine vigor was surveyed later fall in 2002. The annual shoot and node growth was recorded from ten randomly sampled shoots per plant, and shoot diameter was taken in the middle of 4^{th} node. Node length was calculated with total node numbers and the length of each shoot. Twenty (4 x 5) random shoots were investigated for shoot death rate from each vine: 5 shoots in each canopy quadrant area divided by the main trunk and trellis wire. A shoot was considered as dead if more than half of the shoot had died. Trunk diameters were measured 50 cm above the ground in fall 2003.

All rootstock vines developed PD symptoms, although the severity varied. The least severe PD scores were seen on Ramsey and St George, with average PD scores of 1.1 and 1.4 in 2002, 1.0 and 1.7 in 2003, and 1.2 and 0.9 in 2004, respectively (Table 1). The consistently low PD scores on these varieties over several years demonstrate that Ramsey and St. George are reliably resistant or tolerant of PD in north Florida.

Freedom (3.7 - 5.0 score in 2002-2003) and 44-53 (2.6 - 2.3 score in 2002-2003) did not survive through the rating period of 2004. That Freedom succumbed to PD is not surprising—this rootstock showed the worst PD symptoms of all the rootstocks in the trial in the previous two years of observations. The 44-53 showed severe PD symptoms in 2002 and 2003, but typically its symptoms were not as severe as those on O39-16 and 3309C, so it was surprising that this rootstock succumbed while O39-16 and 3309C remain in the trial.

Of the surviving rootstocks, 3309C (3.0) and 5BB (2.9) had the most severe PD symptoms in 2004. The 3309C has consistently shown heavy PD symptoms and most of the vines of this rootstock have died (Table 3). The slightly less severe average PD score for 3309C probably reflects the survivorship of this vine (heavier symptoms being related to lower survivorship). Although 5BB showed excellent survivorship in earlier years of the study, it is now beginning to develop PD symptoms. The 5C, 110R, and 101-14 showed moderate PD symptoms over the three year period (Table 1). O39-16 symptoms in 2004 were less severe than in earlier years, when it was among the most symptomatic rootstocks; however, symptom severity overall was lower in 2004.

After four growing seasons in Florida's heavy PD pressure, environment, the survival rate was very different among the rootstocks (Table 2). Only Ramsey shows 100% survival. All Freedom and 44-53 vines have been killed by PD and only one of ten 3309C vines remains alive. Vines greatly deteriorated in the third growing season; from 2002 to 2003, the vine losses of Freedom, 44-53 and 3309C were 87%, 70%, and 50%, respectively. There was less change overall in vine survival from 2003 to 2004. Although Freedom and 44-53 completed their precipitous decline, other varieties may be reaching a "steady state" of vine survival, with diminishing losses to PD. The 110R, 5C, and 101-14, noted for their moderate PD symptoms, have survival rates of at least 80%.

Fishleder (2000) examined the response of grape rootstocks to PD in a greenhouse. In contrast to this study, Fishleder inoculated vines with *Xf*. The results from this study largely coincide with and confirm Fishleder's findings. In particular, both this research and Fishleder's work found St George to show only minor PD symptoms; O39-16, 5C, 5BB, 110R were intermediate in symptom development; and 3309C and Freedom showed severe PD symptoms. However, our results contradict Fishleder's regarding Ramsey. While we observed only low levels of PD symptoms in Ramsey, Fishleder found Ramsey to be one of the most symptomatic of rootstocks tested. What accounts for this disparity in observation? It is possible that the *Xf* strain that Fishleder cultured and used to inoculate the vines growing in the greenhouse was substantially different in pathogenicity or host specificity from the naturally occurring *Xf* prevalent at Tallahassee, Florida. Another possibility is that while the *Xf* populations in the respective studies do not differ in pathogenicity or host specificity, the direct inoculation through pin prick employed by Fishleder is more difficult for the plant to resist than the natural inoculation by insect vectors that is thought to have occurred in the vineyard.

Rootstock performance in north Florida primarily is a factor of PD response. Cultivars differed in their performance and some were markedly superior-these should be further investigated for their influence on scions. Specifically we suggest Ramsey and St George for additional study. These rootstocks survive well under natural inoculation conditions in north Florida. The evaluation of rootstock cultivars in PD limited viticultural regions is important-much PD management research is focusing on augmenting PD resistance and or tolerance in scions, but rootstocks are a critical component of viticulture. As demonstrated here, several rootstocks have substantial levels of PD resistance that should permit their cultivation in PD prone regions, allowing concentration of effort on scion improvement. Additionally, testing the PD response of ungrafted rootstocks indicates the potential for rootstock varieties to be cultivated as nursery mother vines in PD prone regions. Rootstocks identified as resistant or tolerant to PD could be genetic resources for breeding improved PD resistant scion varieties, as in the case of MidSouth and MissBlue, which have PD resistant rootstocks as parents (DeGrasset and Dog Ridge, respectively). PD resistant rootstocks might be necessary for the cultivation of PD tolerant scion varieties if *Xf* spreads to the root system.

Field evaluation of PD resistance in Florida is easy due to high PD pressure resulting from high populations of vectors and bacteria in the area and should be continued as a technique to test PD management strategies and screen plant material.

REFERENCES

- Bouquet, A. 1980. *Vitis* x *Muscadina* hybridization: a new way in grape breeding for disease resistance in France. Proc. 3rd Intl. Symp. On Grape Breeding. p 177-197.
- Chen, J., Copes, W. E., Walker, R. M., and Lamikanra, O. 2001 Diseases. p189-239. In: Basiouny, F. M. and Himelrick, D. G., (eds). Muscadine Grapes. ASHS Press, Alexandria, Virginia.
- Einset, J. and Pratt. C. 1975. Grapes. p 130-153. In: Janick, J. and Moore, J. N. (eds). Advances in fruit breeding. Purdue University Press, West Lafayette, Indiana.

Fishleder, A. J. 2000. Evaluating grape rootstocks and Vitis and Muscadinia species for resistance and susceptibility to Pierce's Disease. Thesis, University of California, Davis.

Loomis, N. H. 1952. Effect of fourteen rootstocks on yield, vigor, and longevity of twelve varieties of grapes at Meridian, Mississippi. Proc. Amer. Soc. Hort. Sci. 52:125-132.

Loomis, N. H. 1965. Further trials of grape rootstocks in Mississippi. Proc. Amer. Soc. Hort. Sci. 86:326-328.

Lu, J. and Ren, Z. 2002. Evaluation for Pierce's Disease among Muscadine Grapes. XXVIth International

Hort. Congr. p 173

- Magoon, C. A. and Magness, J.R. 1937. Investigations on the adaptability of grape root stocks to Gulf Coast conditions. Proc. Amer. Soc. Hort. Sci. 35:466-470.
- Olien, W. C. and Hegwood, C. P. 1990. Muscadine-a classic southeastern fruit. HortScience, 25: 726
- Pierce, N. B. 1905. The Vineyard: Mr. Pierce and the Lenoir. Pacific Rural Press, 69:79.
- Ren, Z. and Lu, J. 2002. Muscadine rootstock increased the resistance of Florida hybrid bunch grape cv. Blanc du Bois to Pierce and Anthracnose diseases. Proc. Fla. State Hort. Soc. 115:108-110.
- Winkler, A. J., Cook, J. A., Kliewer, W. M., and Lider, L. A. 1974. General Viticulture. University of California Press, Berkeley.

Table 1. PD symptom scores of the ten grape rootstocks during the second, third, and fourth growing seasons.

Rootstock	PD score				
	2002	2003	2004		
O39-16	3.1bc	3.8b	2.3		
101-14	2.2d	2.4c	1.9		
110R	2.2d	1.8cd	2.3		
3309C	3.6b	4.2ab	3.0		
44-53	2.6cd	2.3c			
5BB	2.7cd	1.6cd	2.9		
5C	2.2d	1.9cd	2.1		
Freedom	3.7b	5.0a			
Ramsey	1.1e	1.0d	1.2		
St. George	1.4e	1.7cd	0.9		

Table 2. Vine survival of the ten grape rootstocks after four growing seasons.

Rootstock		Survival %			
	2001	2002	2003	2004	2004
O39-16	9	9	6	6	67
101-14	10	10	10	9	90
110R	10	10	9	8	80
3309C	10	10	5	1	10
44-53	10	10	3	0	0
5BB	10	10	10	7	70
5C	10	10	9	9	90
Freedom	10	8	1	0	0
Ramsey	8	8	8	8	100
St. George	10	9	9	7	70

FUNDING AGENCIES

Funding for this project was provided by the University of California Pierce's Disease Grant Program. Special thanks to California Grapevine Nursery for supplying the grapevines used in this experiment.