THE INFLUENCE OF THE CELL SUSPENSION REDOX POTENTIAL ON THE CAPACITY OF XYLELLA FASTIDIOSA TO AGGREGATE

Project Leaders:

Breno Leite CVSFR, Florida A & M University Tallahassee, FL 32317 Peter C. Andersen NFREC, IFAS, University of Florida Quincy, FL 32351

ABSTRACT

The Calcium Bridging Hypothesis (CBH) implies that surface redox changes on cells of *Xylella fastidiosa* (*Xf*) may influence the capacity of these cells to aggregate. A series of experiments were designed to challenge the proposed CBH. In this hypothesis, thiols (SH) located at the outer membrane level or in adhesion related structures of *Xf* could increase or decrease the cells attraction to the xylem wall surface and/or other *Xf* cells. The focus of this investigation was to address the possibility to alter the surface status of SH groups by exposing cells to reduced and oxidized forms of the tripeptide gluthathione (commonly found in xylem fluid). CBH also assumes that divalent ions would mediate the interaction between thiols and other negative charges. *Xf* aggregation was measured after the following treatments: deionized water (negative control), CaCl₂ 100 mg/L (positive control), reduced glutathione 10 mM (GSH), oxidized glutathione 10 mM (GSSG), GSH 10 μ M for 20 min + CaCl₂ 50 mg/L and GSSG 10 mM for 20 min + 50 mg/L. Maximum aggregation was obtained with pretreatment with GSH 10 mM for 20 min followed by exposure of cells to CaCl₂ 50 mg/L. Results indicate that a reducing environment is essential for cell aggregation. A reducing environment apparently modified the surface of *Xf* cells and predisposed them to interact with divalent ions.

XYLELLA FASTIDIOSA GROWTH ON CHARD2, 3G10R AND XF-26 CHEMICALLY-DEFINED MEDIA

Project Leaders:

Breno Leite CVSFR, Florida A&M University Tallahassee, FL 32317

Peter C. Andersen NFREC, IFAS, University of Florida Quincy, FL 32351

ABSTRACT

Pierce's disease (PD) in grapevines is caused by the bacterium *Xylella fastidiosa* (*Xf*). *Xf* is injected into xylem vessels by leafhoppers. *Xf* can grow planktonic (free cells) or can form aggregates or biofilm (colonies). Growth and biofilm formation of UCLA and STL PD strains was compared in three chemically-defined media, *Xf*-26 (22 components), CHARD2 (10 components) and 3G10R (9 components). PW⁺, a rich non-defined medium, was used as a control. Both planktonic growth and biofilm formation were assessed during the incubation period. CHARD2, which has the amino acid cysteine as a component, was by far the best medium inducing biofilm formation. CHARD2 and *Xf*-26 differed in planktonic growth; CHARD2 exhibited no detectable planktonic growth, whereas *Xf*-26 cultures were predominantly planktonic. 3G10-R performance was below the expectations, since this medium has performed satisfactorily before as an aggregation inducer. 3G10-R has reduced glutathione (reducing agent), however it contains glucose, which is not present in CHARD2. We hypothesize that the redox environment, in each medium, induced the differences in biofilm architecture verified.

Lyriam Marques MBEC Bioproducts, Inc. Calgary, AB, Canada

Merle Olson MBEC Bioproducts, Inc. Calgary, AB, Canada