GENETIC ANALYSIS OF ZONULA OCCLUDENS TOXIN (ZOT) GENE IN TEXAS ISOLATES OF XYLELLA FASTIDIOSA

Principal Investigator:

Blake Bextine Department of Biology University of Texas-Tyler Tyler, TX 75799 bbextine@uttyler.edu

Co-Principal Investigator:

Lisa Morano Univ. of Houston, Downtown Houston, TX 77002-0001 mornol@uhd.edu Researcher: Henry L. Schreiber IV Department of Biology University of Texas-Tyler Tyler, TX 75799 henrylschreiber@gmail.com

Reporting Period: The results reported here are from work conducted January 2009 to December 2009.

ABSTRACT

Multiple subspecies of the phytopathogenic bacterium *Xylella fastidiosa (Xf)* exist which are pathogenic to distinct plant hosts, such as grapes, oleander, almonds, and citrus. Previously, DNA sequence analysis of the *mopB* and *gyrB* genes has been used to separate *Xf* strains into their subspecies groups. In this study, DNA sequence analysis of the *Zot* gene was used to corroborate the genetic variation found between three Texas strains of *Xf*, a grape strain, a weed strain, and an oleander strain (*BAN POL 055, GIL BEC 628A*, and *MED PRI 025* respectively). This approach provided variable gene sequences that allow for categorization of *Xf* at the population level. The *Xf* gene that encodes the *zonula occludens toxin (Zot)* is homologous to the *Zot* found in *Vibrio cholerae*, which is involved in tight junction modulation and disruption between host cells. The results of the analysis of this gene were consistent with the phylogeny found using the more conserved *mopB* and *gyrB* genes at the subspecies level and can be used to differentiate populations within subspecies. The analysis of these variable genes and gene regions provide additional opportunities for new diagnostic and disease management techniques.

LAYPERSON SUMMARY

In this study, we sequenced several regions of the *Xylella fastidiosa (Xf)* genome. *Xf* has been implicated as the cause of several plant diseases that cause plant death and crop loss, including PD, almond leaf scorch, and citrus variegated chlorosis. By identifying and comparing the sequences of *Zot*, we are able to determine the relationship of the different *Xf* subspecies, and may also be able to identify different populations of *Xf*, such as those from California versus those from Texas. This will allow researchers to track the spread of Pierce's disease (PD) among others, and may be useful in detailing the mechanisms by which *Xf* causes disease.

INTRODUCTION

Xylella fastidiosa (Xf) is a Gram-negative, xylem-limited, fastidious, insect-transmitted, gammaproteobacteria (26). Multiple subspecies have been described, including *Xf piercei* which causes Pierce's disease (PD), *Xf sandyi* which cases oleander leaf scorch (OLS), *Xf multiplex* which causes almond leaf scorch (ALS), *Xf 9a5c* which causes citrus variegated chlorosis (CVC) and others (19) (21) (23). *Xf* has distinctly different host ranges; though some strains of *Xf* are only pathogenic in a single host species, others cause disease in a variety of hosts (1) (10).

The Zonula occludens toxin (Zot) in Xf strains has been suggested as a new potential virulence factor in CVC caused by Xf strain 9a5c (23). A homologous protein of the Zot family is found in many Vibrio cholerae strains and has been linked to disruption of tight junctions (11), and diarrheagenicity in V. cholerae that lack the cholerae toxin (5). Recently, a Zot-like protein was found in Stenotrophomonas maltophilia strains, which can cause severe health problems such as endocarditis and bacteremia (7). A Zot gene can also be found in strains of phytopathogens that are closely related to Xf, namely Xanthomonas campestris, which causes lesions and loss of water in plant tissue (2), and Ralstonia solanacearum, which causes bacterial wilt in a variety of plants (9).

Previous studies have shown that most of the sequence variation in Xf subspecies occurs in coding regions derived from bacteriophages (15). These regions are responsible for alterations to the chromosomes, including sequence rearrangements and deletions, of Xf subspecies, and therefore have an impact on the evolution of the genome of Xf (16) (24) (25). Several studies have shown that bacterial Zot genes have originated from bacteriophages (3) (7) (11) (13). The Zot gene found in V. cholerae has great sequence similarity to the protein product I (pI) of the filamentous phage Pf1, and is most likely derived from a Pf1-like phage (13). The pI protein, which shares similarity to many Zot proteins in Xf, has both an extracellular and intracellular region, and is necessary for phage packing and transport across the cell membrane in many filamentous phages (13) (22). The Zot gene discovered in S. maltophilia is reported to originate from the phage φ SMA9, which is similar to the phage φ Lf which infects Xanthomonas species (3) (7). Zot genes in Xf share 55% identity with orthologs in the filamentous phage φ Lf of Xanthomonas campestris pv. vesicatoria and phage φ SMA9 of Stenotrophomonas maltophilia , and with less than 30% identity to orthologues of X. campestris pv. campestris and RSM1 phage of Ralstonia solanacearum (15).

The *Zot* gene and respective protein are useful in comparing *Xf* because of its prophage origins, link to pathogenicity, cosmopolitan nature, and its variability in both nucleotide and amino acid sequences. In this work, the *Zot* genes of three Texas *Xf* strains, a grape strain (*BAN POL 055*), an oleander strain (*MED PRI 025*), and a multiplex strain (*GIL BEC 628A*)

were compared. These sequences were then translated and modeled *in silico* to compare the effects of the substitutions on protein structure. Finally, phylogenetic analysis was used to show the utility of the *Zot* gene in indentifying subspecies as well as populations within clades.

OBJECTIVES

- 1. Identify taxonomic differences between *Xf* strains that allow *Xf* population dynamics to be studied below the subspecies level.
- 2. Investigate the role of the ZOT protein in grape pathogenicity.

RESULTS AND DISCUSSION

Genbank accession numbers for *Xf BAN POL 055, MED PRI 025, GIL BEC 628A* were **GQ429146, GQ429147**, and **GQ891884**, respectively. These samples are labeled according to their subspecies (i.e. *Xf BAN POL 055* is labeled *Xf piercei* for ease of use). Sample *Xf BAN POL 055* had nucleotide sequences that align to the *Xf Temecula1* and *M23* with 99% identity while sample *Xf MED PRI 025* aligned with 99% identity the unfinished nucleotide sequence of *Xf Ann-1*, and *Xf GIL BEC 628A* aligned with to *Xf M23, Temecula1* and *Ann-1* with greater than 87% identity (**Table 1**).

Table 1.	Nucleotides,	Protein, and	l Homologous Structure	e Alignment	Scores of Zot1.
----------	--------------	--------------	------------------------	-------------	-----------------

			Nucelotide						Protein			
	Temecula1		M23		Ann-1				e-value		samples	
Xf	e- value	Identity	e- value	Identity	e- value	Identity	BAN POL 055		d1ixza	c2r2aB	BAN POL 055	
BAN POL 055	0	99%	0	99%	0	93%	Identity	MED PRI 025	9.7 E-16	NA	Identity	MED PRI 025
MED PRI 025	0	92%	0	92%	0	99%	92.50%	Identity	2.1 E-20	1.80 E- 27	92.50%	Identity
GIL BEC 628A	0	91%	0	91%	0	90%	89.70%	89.10%	0.012	8.10 E- 17	88.30%	89.90%

These results reveal homology between *Xf BAN POL 055* and *Xf M23 and Temecula1* and homology between *Xf MED PRI 025* and *Xf Ann-1*. Sequence variation between sample strains was also found. *Xf BAN POL 055* and *Xf MED PRI 025* shared 92.5% identity, *Xf BAN POL 055* and *Xf GIL BEC 628A* shared 87.9% identity, and *Xf MED PRI 025* and *Xf GIL BEC 628A* shared 87.1% identity. A hypervariable region was found between base pairs 40 to 160 in all three subspecies. Additionally, *Xf GIL BEC 628A* contained a large insertion at basepairs 344 to 387 not found in either *Xf BAN POL 055* or *Xf MED PRI 025* (Figure 1).

	330	340	350	360	370	380	390
	.	<u> </u> .					
Temecul	TTTGTAT(GC <mark>AC</mark> AA					<mark>CACAGCAAGC</mark>
percei	TTT <mark>GTA</mark> T(GCACAA					<mark>CAC</mark> AGCAAGC
sandyi	TTTGTAT(GCACAA					<mark>C</mark> CAGCAAGC
multiplex	TTTGTAT	GCACAAGGGC	GCTGCCCAG	CATCGTCATC	GCGGTTTGC	ATTGTTTGCAC	AACACACAACAAGC

Figure 1. The insertion sequence appeared in multiple samples of Xf GIL BEC 628A, all collected in central Texas.

In silico translation of the *Zot* gene in all three subspecies yielded several amino acid changes and as well as changes in the predicted tertiary structure (data not shown). Sequence variation exists between members of *Xf* subspecies particularly in a hypervariable region found at the N-terminus of the *Zot1* protein (data not shown). Protein sequences submitted to Pfam returned significant results from the *Zot* family (PF05707) with e-values of at least 2.8e⁻¹¹. In a homologous structure search,

the Xf subspecies were placed in two different groupings. Xf GIL BEC 628A and MED PRI 025 matched the crystal structure of the N-terminus domain of the Zot protein of the Neisseria meningitidis (SCOP code c2r2aB) with an e-value of $8.1e^{-17}$ and $1.8e^{-27}$ respectively (**Table 1**). While Xf BAN POL 055 matched a protein in the P-loop containing nucleoside triphosphate hydrolases superfamily (SCOP code d1ixza) with an e-value of $9.7e^{-16}$ (**Table 1**). As a reference, Xf Temecula1 was also submitted to PHYRE and also matched the protein d1ixza in the triphosphate superfamily. Xf GIL BEC 628A and MED PRI 025 also aligned to the protein d1ixza, but with a higher e-value than their respective alignments to c2r2aB (**Table 1**).

Phylogenetic comparison shows three distinct groupings of Xf Zot proteins (data not shown). These groupings were not consistent with current organization of Xf clades. Closer analysis of the individual Zot proteins revealed that three distinct homologues of Zot proteins exist in Xf. Each form was placed in the Zot superfamily according to HMM searches performed at Pfam. Additionally, these homologues of Zot are found across many taxa, including Xanthomonas campestris and Stenotrophomonas maltophilia. Finally, protein sequence comparisons between the four copies of the Zot gene found in Xf Ann-1 show that only two copies share a high degree similarity (an error value of 0.0) while all other comparisons show positive error value scores, thus indicating high sequence variation. The Zot proteins thus form three distinct homologues hereby named Zot1, Zot2, and Zot3. Zot1 includes the three sequences from Xf BAN POL 055, MED PRI 025, and GIL BEC 628A as well as two additional sequences from Xf Temecula1 (gi|28198830| and gi|28198817|), two additional sequences from Xf M23 (gi|182681531| and gi|182681517|), and one additional sequence from Xf Ann-1 (gi|71902114|). Zot2 includes one sequence from Xf Temecula1 (gi|28198830|) and two sequences from Xf M12 (gi|170730250| and gi|170730245|). Zot3 includes one sequence from Xf Ann-1 (gi|71728117) and two sequences from Xf 9a5c (gi|15838473| and gi|15838468|).

Phylogenetic analysis comparison of *Zot1* proteins corroborated analysis of the *mopB* and *gyrB* proteins. The *Xf BAN POL* 055 sample grouped with *Xf Temecula1* and M23 sequences, and the *Xf MED PRI 025* sequence grouped with the sequence from *Xf Ann-1*, while *the Xf GIL BEC 628A* sequence branched separately from the other sequences (**Figure 2**).

Figure 2. Cladogram of *Zot1* using sequences found in NCBI. Alignment performed using ClustalW and visualized using Treeview v1.6.6. Genbank accession numbers follow organism name. Sequences labeled according to source organism and genomic location. Sequence from *Xanthomonas campestris pv vesicatoria str 85-10* is a filamentous phage Cflc related protein belonging to the *Zot* family.

The sequence variation in *Zot1* found in Texas subspecies of *Xf* is evident and can be exploited for classification and identification. All tested isolates contained *Zot1* representing all three clades of *Xf* present in Texas. *In silico* protein analysis revealed changes in amino acid sequence, as well as predicted changes in tertiary structure. Phylogenetic analysis using the *Zot1* protein accurately grouped the sample *Xf* strains to their respective clades. Finally, sequence variation within the *Zot1* gene was great enough to show differentiation between populations of *Xf piercei* populations in California and Texas, thus allowing a greater degree of classification of *Xf*.

Zot1 was chosen for this study as the Zot1 gene is the most common form of Zot in Xf Temecula1 and M23. Future study will elucidate the relationship between Zot1, Zot2, and Zot3 and determine if they are paralogous, xenologous, or a combination of the two. Additionally, future study will describe which Texas isolates, if any, contain the Zot2 or Zot3 gene. Alignment analysis performed using BLASTn and BLASTp shows that several Xf genomes, including Xf M12, and 9a5c do not contain Zot1 based on searches conducted in the EST, Genome, Chromosome, and Nucleotide libraries of NCBI (data not shown). Additionally, Zot1 does not appear in Xf Dixon, though this may be a result of an incomplete Dixon genome.

The exact origin of Zot1 is not certain; however, by examining other, closely related Zot genes, we may make inferences. Zot2 appears to have evolved from filamentous bacteriophages in Vibrio cholerae and Stenotrophomonas maltophilia (7) (13). The Zot2 protein found in Xf has significant homology to another Zot-like protein found in strains of S. maltophilia (7). This Zot protein is the first virulence factor in clinical isolates of S. maltophilia strains, and shows a similarity to the Zot2 protein in Xf Dixon with an error value of $1e^{-128}$, and appears to have arisen from infection from phage φ SMA9 (7). Though, Zot1 and Zot2 share little identity (less than 5%), it can be deduced that Zot1 arose in Xf through phage integration as in Stenotrophomonas maltophilia and Vibrio cholerae. In a BLASTx search at NCBI, Xf BAN POL 055 matched Xanthomonas phage Cflc protein labeled Cflcp4, which contains a putative Zot protein. Additionally, several of the phage related proteins found in S. maltophilia strain c5 match phage related protein sequences surrounding a Zot1 gene found in Xf Temecula1. Finally, the direction of the open reading frame of the Zotl gene in Xf BAN POL 055 and GIL BEC 628A differs from Xf MED PRI 025, and the genomic context of the Zotl gene differs between each strain. Genomic rearrangements of Xfprophage regions have been described before (16). Initial analysis of the alignment of the Xf Ann-1 partial genome to both XfTemeculal and M23 shows that the Zotl gene and its associated phage integrases are found in the opposite direction and in different locations in the genome as can be inferred from the necessary use of different primer sets at the beginning and end of the Zot1 gene, as well as a study of the genomic context of Xf M23, Temecula1, and Ann-1 found at NCBI. Reorganizations such as these have previously been attributed to large prophage regions that act as recombination sites (16). Thus, it is possible that some Xf ancestors received the Zotl gene after branching. Another possibility is that phage-related recombination removed the Zot1 gene from some Xf subspecies after a branching event

Little is known about the Zot protein's structure due to the complexity of isolating Zot for analysis as a result of its transmembrane region (7) (13) (22). In silico translations and structure predictions offer great insights into protein function and classification and has been found to be accurate and sensitive. By using *in silico* analysis, the sequence variation found in Zot genes between subspecies has been shown to yield differences in protein structure. These differences appear near the N-terminus of the Zot1 protein, which is extracellular in other species of bacteria (7) (13) (22). It is possible to infer that changes made in the Zot protein are driven by host-pathogen interactions. Further study regarding the location and expression of the Zot1 protein is necessary to fully elucidate the relationship.

The first step in determining host range in differentially pathogenic bacteria is placing the bacteria into clades (17). Many techniques for identification and classification exist; however, the complexity of *Xf* pathogen makes categorization based on morphology or pathogenicity difficult (1). Additionally, *Xf* has been shown to have limited genomic variability within clades and region, and that the majority of strain specific genes occur in prophage regions, though they contain genomic islands which enable rapid evolution (25). Techniques that focus on classification based on well conserved regions shared by all *Xf* subspecies might then miss putative evolutionary growth and adaptation. The *Zot1* gene insertion is an excellent target for QRT-PCR, and the small sequence differences can be targeted by restriction enzyme digestion analysis for quick and accurate identification and classification of *Xf* subspecies and populations.

CONCLUSIONS

Comparative analysis *Zot1* genes and proteins provide accurate, population level differentiation therefore allows researchers greater ability to track the spread of economically important phytopathogens. Additionally, *in silico* translation and analysis of *Zot1* describes in greater detail differences between strains, and describes possible conformation changes that result from sequence changes between strains. Taken together, these results show that *Zot1* is a useful target for differential sequence analysis and can be used to elucidate the phylogenetic history of *Xf*, and its spread through the U.S.

REFERENCES CITED

- 1. Almeida, R. P. P., and A.H. Purcell. 2003. Biological traits of *Xylella fastidiosa* strains from grapes and almonds. Appl. Environ. Microb. 69:7447–7452.
- 2. Block, A., E. Schmelz, P.J. O'Donnell, J. B. Jones, and H. J. Klee. 2005. Systemic acquired tolerance to virulent bacterial pathogens in tomato. Plant. Physiol. 138:1481–1490.
- Chang, K.H., F.S. Wen, T.T. Tseng, N.-T. Lina, M.-T. Yanga, and Y.-H. Tseng. 1998. Sequence analysis and expression of the filamentous phage φLf gene I encoding a 48-kDa protein associated with host cell membrane. Biochem .Biophys. Res. Commun. 245:313–318.
- 4. Chenna, R., H. Sugawara, T. Koike, R. Lopez, T. J. Gibson, D. G. Higgins, and J. D. Thompson . 2003. Multiple sequence alignment with the Clustal series of programs. Nucleic. Acids. Res. 31(13):3497-500.

- da Silva, V. S., C. S. Shida, F. B. Rodrigues, D. C. D. Ribeiro, A. A. de Souza, H. D. Coletta-Filho, M. A. Machado, L. R. Nunes, and R. C. de Oliveira. 2007. Comparative genomic characterization of citrus-associated *Xylella fastidiosa* strains. BMC Genomics 8:474-489.
- de Mello Varani, A., R. C. Souza, H. I. Nakaya, W. C. de Lima, L. G. P. de Almeida, E. W. Kitajima, J. Chen, E. Civerolo, A. T. R. Vasconcelos, and M. V. Sluys. 2008. Origins of the *Xylella fastidiosa* prophage-like regions and their impact in genome differentiation. PLoS One 3(12): e4059. Epub 2008 Dec 31.
- Fasano, A., B. Baudry, D. W. Pumplin, S. S. Wasserman, B. D. Tall, J. M. Ketley, and J. B. Kaper. 1991. *Vibrio cholerae* produces a second enterotoxin, which affects intestinal tight junctions. Proc. Natl. Acad. Sci. USA 88:5242-5246.
- 8. Finn, R. D., J. Tate, J. Mistry, P. C. Coggill, S. J. Sammut, H. R. Hotz, G. Ceric, K. Forslund, S. R. Eddy, E. L. Sonnhammer, and A. Bateman. 2008. The Pfam protein families database. Nucleic Acids Res. 36:D281-D288.
- 9. Hagemann, M., D. Hasse, and G. Berg. 2006. Detection of a phage genome carrying a zonula occludens like toxin gene (*zot*) in clinical isolates of *Stenotrophomonas maltophilia*. Arch. Microbiol. 185: 449-458.
- 10. Hall, A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41:95-98.
- 11. Hayward, A. C. 1991. Biology and epidemiology of bacterial wilt caused by *Pseudomonas solanacearum*. Annu. Rev. Phytopathol. 29:65-87.
- 12. Hopkins, D. L., and A. H. Purcell. 2002. *Xylella fastidiosa*: cause of PD of grapevine and other emergent diseases. Plant Dis. 86:1056-1066.
- 13. Johnson, J. A., J. G. Morris, Jr., and J. B. Kaper. 1993. Gene encoding zonula occludens toxin (*zot*) does not occur independently from cholera enterotoxin genes (ctx) in *Vibrio cholerae*. J. Clin. Microbiol. 31:732–733.
- 14. Kelley, L. A., and M. J. E. Sternberg. 2009. Protein structure prediction on the web: a case study using the Phyre server. Nat. Protoc. 4: 363-371.
- 15. Koonin E. V. 1992. The second cholera toxin, *Zot*, and its plasmid-encoded and phage-encoded homologues constitute a group of putative ATPases with an altered purine NTP-binding motif. FEBS Lett. 312(1):3-6.
- Larkin, M. A., G. Blackshields, N. P. Brown, R. Chenna, P. A. McGettigan, H. McWilliam, F. Valentin, I. M. Wallace, A. Wilm, R. Lopez, J. D. Thompson, T. J. Gibson, and D. G. Higgins. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:2947-2948.
- 17. Monteiro-Vitorello, C. B., M. C. De Oliveira, M. M. Zerillo, A. M. Varani, E. Civerolo, and M. A. Van Sluys. 2005. *Xylella* and *Xanthomonas* mobil'omics. OMICS. 9:146-159.
- 18. Morano, L. D., B. R. Bextine, D. A. Garcia, S. V. Maddox, S. Gunawan, N. J. Vitovsky and M. C. Black. 2008. Initial genetic analysis of *Xylella fastidiosa* in Texas. Curr. Microbiol. 56(4):346-351. Epub 2008 Jan 3.
- 19. Page, R.D. (1996). TreeView: An application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12: 357–358.
- 20. Purcell, A. H. 1997. Xylella fastidiosa, a regional problem or global threat? J. Plant Pathol. 79:99-105.
- Rozen, S., and H. Skaletsky. 2000. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132:365-386.
- Schaad, N. W., E. Postnikova, G. Lacy, M. Fatmi, and C. J. Chang. 2004. *Xylella fastidiosa* subspecies: *Xf* subsp. *piercei*, subsp. nov., *Xf* subsp. *multiplex* subsp. nov., and *Xf* subsp. *pauca* subsp. nov. Syst. Appl. Microbiol. 27:290-300. (Erratum 27:763).
- 23. Schmidt, E., S. M. Kelly, and C. F. van der Walle. 2007. Tight junction modulation and biochemical characterisation of the zonula occludens toxin C-and N-termini. FEBS Lett. 581(16):2974–2980.
- 24. Simpson, A. J. G., F. C. Reinach, P. Arruda, F. A. Abreu, M. Acencio, et al. 2000. The genome sequence of the plant pathogen *Xylella fastidiosa*. Nature 406:151-157.
- 25. Van Sluys, M. A., M. C. de Oliveira, C. B. Monteiro-Vitorello, C. Y. Miyaki, L. R. Furlan, L. E. Camargo, A. C. da Silva, D. H. Moon, M. A. Takita, E. G. Lemos, M. A. Machado, M. I. Ferro, F. R. da Silva, M. H. Goldman, G. H. Goldman, M. V. Lemos, H. El Dorry, S. M. Tsai, H. Carrer, D. M. Carraro, R. C. de Oliveira, L. R. Nunes, W. J. Siqueira, L. L. Coutinho, E. T. Kimura, E. S. Ferro, R. Harakava, E. E. Kuramae, C. L. Marino, E. Giglioti, I. L. Abreu, L. M. Alves, A. M. do Amaral, G. S. Baia, S. R. Blanco, M. S. Brito, F. S. Cannavan, A. V. Celestino, A. F. da Cunha, R. C. Fenille, J. A. Ferro, E. F. Formighieri, L. T. Kishi, S. G. Leoni, A. R. Oliveira, V. E. Rosa, Jr., F. T. Sassaki, J. A. Sena, A. A. de Souza, D. Truffi, F. Tsukumo, G. M. Yanai, L. G. Zaros, E. L. Civerolo, A. J. Simpson, N. F. Almeida, Jr., J. C. Setubal, and J. P. Kitajima. 2003. Comparative analyses of the complete genome sequences of PD and citrus variegated chlorosis strains of *Xylella fastidiosa*. J. Bacteriol. 185:1018-1026.
- Wells, J. M., B. C. Raju, H. Hung, W. G. Weisburg, L. Mandelco-Paul, and D. J. Brenner. 1987. *Xylella fastidiosa* gen. nov., sp. nov.: gram-negative, xylem-limited, fastidious plant bacteria related to *Xanthomonas* spp. Int. J. Syst. Bacteriol. 37:136-143.

FUNDING AGENCIES

Funding for this project was provided in part by the USDA Animal and Plant Health Inspection Service, and the Texas Pierce's Disease Research and Education Program.