INTRODUCTION

Citrus variegated chlorosis (CVC) is a disease of sweet orange (Citrus sinensis (L.)) trees caused by Xylella fastidiosa (Xf) subsp. pauc a (Schaad et al., 2004). In Brazil, CVC is responsible for losses of US $100 million per year to the citrus industry (Della-Coletta et al., 2001). Endophytes colonize an ecological niche similar to that of phytopathogens, and this fact might favor them as candidates for biocontrol agents (Hallmann et al., 1997) because they have access to and could interact with phytopathogens (Azevedo et al., 2000). Many endophytic bacteria have been isolated from sweet orange (Araújo et al., 2002), but our research has focused on the genus Methylobacterium, which occupies the same ecological niche as Xf subsp. pauc a in the xylem vessels of plants (Araújo et al., 2002; Lacava et al., 2006). The genus Methylobacterium is described as a main player in the interaction between the endophytic community and the pathogen Xf subsp. pauc a (Araújo et al., 2002; Lacava et al., 2004). Catharanthus roseus (L.) G. Don has been shown to be an excellent experimental host for Xf subsp. pauc a (Monteiro et al., 2001). Catharanthus roseus has also been used to study the interactions between Xf subsp. pauc a and endophytic bacteria (Lacava et al., 2007). Xylem-feeding leafhoppers (Homoptera: Cicadellidae, tribes Cicadellini and Proconiini) are unique organisms in terms of their nutritional ecology; they are able to feed from xylem fluid, which is difficult to access and a nutritionally dilute food (Young, 1968). A clear association has been observed between Cicadellinae leafhoppers xylem-feeding habit and ability to transmit Xf (Almeida and Purcell, 2003). In Brazilian citrus groves, Dilobopterus costalimai Young, Oncometopia facialis (Signoret), and Acrogonia citrina Marucci & Cavichioli are the most common sharpshooters found, whereas Bucephalogonia xanthophis (Berg) is the most commonly trapped in citrus nurseries and young groves (Redak et al., 2004). A new genetic transformation tool, called paratransgenesis, has been used to prevent the transmission of pathogens by insect vectors to humans (Beard et al., 1998). Paratransgenesis means genetic alteration of
symbiotic microbes that are carried by insects. The overall strategy of disease prevention is called symbiotic control and is a variation on the theme of symbiotic therapy (Ahmed, 2003). The key to symbiotic control is finding a candidate microbe having an existing association with the ecosystem that includes the problem or condition at hand and that occupies the same niche as or has access to the target pathogen (Miller, 2007).

OBJECTIVES
In this work, we report the localization of the endophytic bacterium, *M. mesophilicum*, in *C. roseus* model plant and the transmission of this endophyte by *B. xanthophis*. Also, we propose *M. mesophilicum* as a candidate for a symbiotic control strategy to reduce the spread of *Xf* subsp. *pauca*.

RESULTS
When the pCM88 was introduced into the strain *M. mesophilicum* SR1.6/6, up to 102 transformants per μg of plasmid DNA were obtained (now called SRGFP), indicating a high efficiency of transformation. The analysis of randomly selected SRGFP transformants revealed that pCM88 was stably maintained in medium without antibiotic, expressing both the resistance to tetracycline and the gfp gene, after 20 generations in 120 h, 95%, decreasing the stability on 0.25% per generations approximately (Table 1). To evaluate the bacterial community of insect heads, five insects were used. After isolation, a total of 2.14×10^3 bacteria with an average of 3.56×10^2±23.2 bacteria per insect head were isolated. The original bacterial community of *B. xanthophis* was comprised of five groups: *Methylobacterium* sp., *Actinomycetes*, *Curtobacterium* sp., *Sphingomonas* sp., and *Bacillus* sp. (Figure 1). The *Methylobacterium* genus occurred naturally in *B. xanthophis*. The ecological niche occupied by the endophytic bacterium *M. mesophilicum* on *C. roseus* plants was determined by visualization with fluorescent microscope, of in vitro cultivated plants, 45 days after bacterium inoculation. A preferential colonization of plant xylem by this bacterium is clearly observed in fluorescence microscopy (Figures 2C and D). Figures 2A and B show vessels from control plants, where no fluorescent cell can be observed. The insects used in transmission experiments were monitored for the presence of the SRGFP strain 24 h after acquisition. Bacteria isolation from insect heads revealed the average population density of *M. mesophilicum* of 1.64×10^2 ± 11.33 CFU/insect head suggesting that the bacteria are capable of colonizing the foregut of the insect as they were not washed way by the sap flux. The ability of the sharpshooter *B. xanthophis* in transmitting *M. mesophilicum* was accessed by insect acquisition of endophytic strain SRGFP and further feeding in *C. roseus* plants cultivated in greenhouse. Forty-five days after the insect feeding on plants, leaves on which insects were trapped, were submitted to bacterial isolation. The population density of *M. mesophilicum* found in *C. roseus* leaves 45 days after insect transmission presented an average of 2.8×103 CFU/g of fresh tissue. In analyzing inoculated plants, from 45 plants used in insect traps, six presented the SRGFP strain colonizing inner tissues endophytically. It indicates that *B. xanthophis* is able to transmit the endophytic bacteria in the same way it transmits *Xf*, with an efficiency of transmission of 13.3% (Table 2).

CONCLUSIONS
The results from this study suggest that the pCM88 plasmid was stably maintained in planta and sharpshooter for at least 180 generations in the transmission assay. As shown in this study, the transgenic endophytic *M. mesophilicum* has most of the prerequisites, for a successful strategy using paratransgenesis. The use of GFP, which does not affect the fitness of the bacteria, as a marker gene makes transfer of bacteria and the plasmid traceable, was done with success in *M. mesophilicum* in this work. Many aspects can influence the transmission efficiency, such as phytopathogen populations in feeding plant and the interaction between bacterial communities residing vector foregut and inoculated plant. Furthermore, bacteria community present in plants and insects could influence disease development by reducing the insect transmission efficiency due to competition with pathogens or by symbiotic control of *Xf*. The colonization and transmission of *M. mesophilicum* in the same host tissues and insect vector of *Xf* subsp. *pauca* makes it possible to study the potential interactions between these bacteria in the insect body and makes *M. mesophilicum* an interesting candidate for the symbiotic control of the CVC agent, e.g., through a paratransgenesis approach.

Table 1. Plasmidial stability of pCM88 on *Methylobacterium mesophilicum*. The percent of reaming colonies caring out the pMC88 was obtained from randomly collected samples after 24, 48, 72, and 120 h of culture cells of strain SR1.6/6 growing without antibiotic tetracycline.

<table>
<thead>
<tr>
<th>Generation number</th>
<th>Reaming colonies caring out pCM88 (%)</th>
<th>SDa</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (0 h)</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>4 (24 h)</td>
<td>99</td>
<td>1</td>
</tr>
<tr>
<td>8 (48 h)</td>
<td>98</td>
<td>3.21</td>
</tr>
<tr>
<td>12 (72 h)</td>
<td>95</td>
<td>2.08</td>
</tr>
<tr>
<td>20 (120 h)</td>
<td>95</td>
<td>1</td>
</tr>
</tbody>
</table>

a SD for four replicates
Figure 1. Most dominant group of bacteria isolated from *Bucephallogonia xanthophis*.

Figure 2. Fluorescent microscopy evidencing the ecological niche occupied by endophytic *Methylobacterium mesophilicum*, expressing GFP in *Catharanthus roseus* plants. Xylem vessels observed under a fluorescence microscope (Leica MZ FLIII) 45 days after inoculation. Images are the result of the overlay of images produced using filters DAPI and GFP. A and B) Xylem vessels of a control plant, scale bar=10 μm. C and D) Colonized xylem vessel, scale bar=10 μm and 5 μm.

Table 2. Evidence of the transmission of *M. mesophilicum* expressing GFP (SRGFP) to healthy plants (*C. roseus*) by insects (*B. xanthophis*). Plants were inoculated by insects, which acquired the fluorescent bacteria from membrane system. Endophytic bacteria were isolated from inoculated plants after 45 days of inoculation and fluorescent bacteria were counted. The average of SRGFP in inoculated plants was calculated as colony forming unit (CFU)/g of fresh tissue.

<table>
<thead>
<tr>
<th>Number of inoculated plants</th>
<th>Number of plants positive to presence of SRGFP</th>
<th>Transmission rate</th>
<th>SRGFP in plants (CFU/g fresh tissue)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>6</td>
<td>13.3%</td>
<td>2.8×10^3</td>
</tr>
</tbody>
</table>
REFERENCES CITED

FUNDING AGENCIES
Funding for this project was provided by the Fundação de Amparo à Pesquisa do Estado de São Paulo/FAPESP (n. proc. 06/55494-4).