XYLELLA FASTIDIOSA TRANSMISSION BY GLASSY-WINGED SHARPSHOOTERS AND SMOKETREE SHARPSHOOTERS FROM ALTERNATE HOSTS TO GRAPEVINES

Principal Investigator:	Cooperator:
Thomas M. Perring	Tracy R. Pinckard
Department of Entomology	Department of Entomology
University of California	University of California
Riverside, CA 92521	Riverside, CA 92521
thomas.perring@ucr.edu	tracy.pinckard@ucr.edu

Reporting Period: The results reported here are from work conducted July 2007 to September 2009.

ABSTRACT

This project is designed to evaluate the importance of many common weed, agricultural, and cover crop plants that are found in close proximity to vineyards as sources of Xylella fastidiosa (Xf) from which glassy-winged (GWSS) and smoketree (STSS) sharpshooters can acquire and transmit Xf into grapevines. In our studies Xf was successfully isolated from needleinoculated alfalfa, basil, lima bean, tomato, annual bluegrass, cheeseweed, wild-type sunflower, goosefoot, London rocket, Spanish broom, tree tobacco, annual ryegrass, black mustard, Blando brome, New Zealand White clover, Hykon Rose clover, cowpea, fava bean, Miranda field pea, meadow barley, California Red oats, and White sweetclover. We were unable to recover Xf from bell pepper, cotton, black nightshade, common groundsel, Evening Sun sunflower, horseweed, Zorro annual fescue, birdsfoot trefoil, or sudangrass plants. We have confirmed successful transmission of Xf by GWSS for alfalfa-toalfalfa, alfalfa-to-grapevine, basil-to-basil, basil-to-grapevine, tomato-to-tomato, Blando brome-to-Blando brome, Blando brome-to-grapevine and cowpea-to-cowpea. GWSS transmission of Xf from tomato-to-grapevine, cowpea-to-grapevine, fava bean-to-fava bean, and fava bean-to-grapevine could not be confirmed with culturing. We have determined that STSS can transmit Xf between alfalfa plants, from alfalfa to grapevines, between Blando brome plants, from Blando brome to grapevines, and between fava bean plants. We were unable to confirm successful transmission by STSS from tomato-totomato, tomato-to-grapevine, cowpea-to-cowpea, or cowpea-to-grapevine, or from fava bean to grapevines. Goosefoot appears to be a poor host for GWSS, STSS, and Xf, as nearly all the vectors died before the end of the 48-hr acquisition access period. Xf isolates obtained from goosefoot were few and slow-growing.

LAYPERSON SUMMARY

Evaluating the potential of various common plant species found in and near vineyards to serve as reservoirs of Pierce's disease (PD), and the ability of glassy-winged (GWSS) and smoketree (STSS) sharpshooters to acquire and transmit PD from these alternative plant hosts, is fundamental to managing the primary spread of PD in California vineyards. Identifying the plants that contribute to primary spread enables growers to target these plants around their vineyards as a mechanism to reduce spread. Understanding how these two vectors contribute to primary and secondary spread can assist in the development of alternatives to the area-wide management program. To reduce primary spread, efforts must focus on reducing bacteria-carrying vectors from entering healthy vineyards through continued area-wide or local treatment programs outside the vineyard, barriers, trap crops, and/or removal of pathogen sources outside the vineyard.

INTRODUCTION

Over 140 plants are known to host Pierce's disease (PD) strains of *Xylella fastidiosa (Xf)* (Costa et al. 2004, Freitag 1951, Raju et al. 1980, 1983, Shapland et al. 2006, Wistrom and Purcell 2005, <u>http://www.cnr.berkeley.edu/xylella/temp/hosts.</u> <u>htm</u>). Many of these plants are found in close proximity to vineyards, and some are even used as cover crops in vineyards (Statewide IPM Program 2007). While considerable research has identified *Xf* hosts, little work has been done to determine if sharpshooters can acquire the bacteria from these hosts and transmit it to grapevines. If this does not occur, then the alternate host is of little consequence in PD epidemiology. Conversely, plants that contribute inoculum for sharpshooter acquisition and transmission to grape should be removed if growers wish to reduce primary spread into their vineyards.

To successfully implement a program to remove pathogen sources, we first must identify those sources. The introduction into California of the glassy-winged sharpshooter (GWSS), an insect with a broad host range, theoretically increases the probability of disease spread from the these alternate host plants to grape. For this to occur, GWSS must feed on the infected plant in such a way to acquire Xf from plant, and successfully transmit the acquired pathogen to grapevines. While studies have shown mechanical and insect transmission to a wide variety of alternate hosts (Freitag 1951, Purcell and Saunders 1999) they have demonstrated transmission from only a handful of alternate hosts to grapevines (Hill and Purcell 1995, 1997). We are unaware of research published on transmission of Xf, PD strain, from alternate hosts into grapevines using GWSS or STSS, a native California sharpshooter also found in grape growing regions, as the vector.

OBJECTIVES

Using GWSS and STSS vectors:

- 1. Evaluate the acquisition and transmission of *Xf* to grapevines from agricultural crop plants known to be PD hosts that are grown in the vicinity of vineyards.
- 2. Evaluate the acquisition and transmission of *Xf* to grapevines from weed plants known to be PD hosts that are grown in the vicinity of vineyards.
- 3. Evaluate the acquisition and transmission of Xf to grapevines from vineyard cover crop plants.

RESULTS AND DISCUSSION

Needle Inoculated Plants

Thirty-four plant species have been needle-inoculated with Xf (Table 1). Xf does not appear to be able to survive in bell pepper, cotton, black nightshade, common groundsel, Evening Sun sunflower, horseweed, Zorro annual fescue, birdsfoot trefoil, or sudangrass plants. A few positives were detected at two-weeks post-inoculation with ELISA for bell pepper, cotton, common groundsel, and horseweed, but no plants tested positive by ELISA at four weeks, nor were they positive by culturing. These results suggest a transient infection or detection of dead Xf cells by the early ELISA. Evening Sun Sunflower tested positive by ELISA for all 20 plants, but the cultures were clean and negative. However, the Evening Sun sunflower also died very quickly, which may explain why it was not detected by culture. Final results are pending for filaree, Shepherd's purse, and stinging nettle.

Xf was successfully isolated from needle-inoculated alfalfa, basil, lima bean, tomato, annual bluegrass, cheeseweed, wildtype sunflower, London rocket, goosefoot, Spanish broom, tree tobacco, annual ryegrass, black mustard, Blando brome, New Zealand White clover, Hykon Rose clover, cowpea, fava bean, Miranda field pea, meadow barley, California Red oats, and White sweetclover. We recovered one isolate of *Xf* for lima bean in the first needle-inoculation set, so we repeated this test. No isolates were recovered from a second needle-inoculated set, suggesting that lima bean is a poor host for *Xf*. We did not isolate *Xf* from basil until 16 weeks post-inoculation. All ELISA tests for Basil were positive, including those for the negative controls, indicating that the commercial kit for *Xf* from Agdia, Inc. is not reliable for testing this plant species. The cultures for the negative controls were always negative, including at 16-weeks post-inoculation when the positive cultures from other plants were obtained. We only recovered one isolate from annual bluegrass. Cultures from annual bluegrass and fava bean have been routinely heavily contaminated, regardless of plant age or inoculation status. Other microbes present in the plants may be obscuring the presence of *Xf* in those species. Healthy grapevines also were needle inoculated with every inoculation group as positive controls for each set.

Туре	Common Name	Scientific Name	ELISA +	Culture +	Xf Recovered?
Agriculture	Alfalfa	Medicago sativa	20/20	14/20	Yes
Crops	Basil, Italian Large Leaf	Ocimum basilicum	20/20*	10/20	Yes
	Bell Pepper, Taurus	Capsicum annuum	5/20**	0/20	No
	Cotton, Upland	Gossypium hirsutum	2/15**	0/15	No
	Lima Bean, Fordhook 242	Phaseolus lunatus	2/38	1/38	Yes
	Tomato, Rutgers	Solanum lycopersicum	15/39	8/38	Yes
Weeds	Annual Bluegrass	Poa annua	8/20	1/20****	Yes
	Black Nightshade	Solanum nigrum	0/20	0/20	No
	Cheeseweed	Malva parviflora	7/20	16/20	Yes
	Common Groundsel	Senecio vulgaris	3/20**	0/20	No
	Common Sunflower, Evening Sun	Helianthus annuus	20/20*	0/20	No
	Common Sunflower, wild-type	Helianthus annus	19/20	7/20	Yes
	Filaree	Erodium species		Tests in Prog	gress
	Goosefoot	Chenopodium species	7/40***	5/33	Yes
	Horseweed	Conyza Canadensis	2/20**	0/20	No
	London Rocket	Sisymbrium irio	5/20	13/20	Yes
	Shepherd's Purse	Capsell bursa-pastoris		Tests in Prog	gress
	Spanish Broom	Spartium junceum	17/20	17/20	Yes
	Stinging Nettle	Urtica species		Tests in Prog	gress
	Tree Tobacco	Nicotiana species	12/20**	2/20	Yes

Table 1. ELISA and culture results for plant species needle-inoculated with Xf.

Table 1. ELISA and culture results for plant species needle-inoculated with Xf (continued).

Туре	Common Name	Scientific Name	ELISA +	Culture +	Xf Recovered?
Cover	Annual Ryegrass	Festuca species	6/20	6/20	Yes
Crops	Annual Fescue, Zorro	Lolium multiflorum	0/20	0/20	No
	Black Mustard	Brassica nigra	17/20	13/20	Yes
	Blando Brome	Bromus hordeaceus	16/20	13/20	Yes
	Birdsfoot Trefoil	Lotus species	10/20	0/20	No
	Clover, New Zealand White	Trifolium repens	15/20	2/20	Yes
	Clover, Hykon Rose	Trifolium hirtum	16/20	10/20	Yes
	Cowpea, California Blackeye	Vigna unguiculata	22/40	16/35	Yes
	Fava Bean, Windsor	Vicia faba	30/40	7/20****	Yes
	Field Pea, Miranda	Pisum sativum	14/39	3/11	Yes
	Meadow Barley	Hordeum brachyantherum	9/20	4/20	Yes
	Oat, California Red	Avena sativa	12/20	2/20	Yes
	Sudangrass	Sorghum bicolor var. sudanense	0/20	0/20	No
	Sweetclover, White	Melilotus alba	20/20	16/20	Yes

False positives

** Most or all positives in 2-week ELISA test; possible transient infection or dead cells detected.

*** Very slow-growing Xf, detected well after 4-weeks.

**** Fava bean contains many other microorganisms that contaminate and probably obscure positive culture results. Also, fava bean occasionally produces false positives by ELISA.

Insect Transmission

Last year we lost our clean, captive-reared GWSS and STSS colonies to infestations of the parasitoid wasp, *Gonatocerus ashmeadi*. Several of the needle-inoculated plant species died before we were able to rebuild our colonies and perform transmission with them. Therefore, we re-grew and needle-inoculated new sets of those alternative host plants to use for transmission after the colonies sufficiently recovered. To date, transmission using both vector species has been completed for alfalfa, basil, tomato, annual bluegrass, cheeseweed, wild-type sunflower, goosefoot, London rocket, tree tobacco, annual ryegrass, Blando brome, cowpea, fava bean, California Red oats, and White sweetclover. Although transmission has been completed, we are still evaluating the test plants for basil, annual bluegrass, cheeseweed, wild-type sunflower, London rocket, annual ryegrass, California red oats, and White sweetclover, and final data are still pending. At the time of preparing this report, transmission was underway for Spanish broom, black mustard, New Zealand White clover, Hykon Rose clover, Miranda field pea, and meadow barley, with the final data expected to be available in four-eight weeks.

We have confirmed (by culture) successful transmission of Xf by GWSS for alfalfa-to-alfalfa, alfalfa-to-grapevine, basil-tobasil, basil-to-grapevine, tomato-to-tomato, Blando brome-to-Blando brome, Blando brome-to-grapevine and cowpea-tocowpea (**Table 2**). GWSS transmission of Xf from tomato-to-grapevine, cowpea-to-grapevine, fava bean-to-fava bean, and fava bean-to-grapevine tested negative by culturing. Only four of 24 GWSS survived the 48-hr acquisition access period (AAP) on goosefoot. The surviving four insects were placed on a clean grapevine test plant, although they appeared to be in the process of dying.

We confirmed successful transmission of X_f by STSS for alfalfa-to-alfalfa, alfalfa-to-grapevine, Blando brome-to-Blando brome, Blando brome-to-grapevine and fava bean-to-fava bean (**Table 2**). We were unable to confirm successful transmission by STSS from tomato-to-tomato, tomato-to-grapevine, cowpea-to-cowpea, or cowpea-to-grapevine. All 36 STSS died on goosefoot before the end of the 48-hr acquisition access period (AAP), indicating that goosefoot is a poor host for STSS. Goosefoot also appears to be a poor host for X_f , as few cultures were obtained from needle-inoculated plants, and all were extremely slow growing, except for one.

			GWSS		STSS	
Host Plant Type	PD Acquisition Host	PD Inoculation Host	ELISA +	Culture +	ELISA +	Culture +
	Alfalfa	Alfalfa	4/5	4/5	5/5	3/5
A criculture	Alfalfa	Grapevine	4/5	4/5	4/5	4/5
Agriculture Crop	Basil	Basil	9/9	9/9	Tests in Progress	
	Basil	Grapevine	8/9	8/9	Tests in Progress	
	Tomato, Rutgers	Tomato, Rutgers	3/5	1/5	1/5	0/5
	Tomato, Rutgers	Grapevine	2/5	0/5	3/5	0/5

Table 2. Results for transmission of Xylella fastidiosa by GWSS and STSS to date.

Table 2.	Results for transmission	of <i>Xylella fastidiosa</i> b	by GWSS and STSS to date	(continued).
----------	--------------------------	--------------------------------	--------------------------	--------------

abic 2. Result	s for transmission of <i>Xylella fasti</i>		GWSS STSS				
Host Plant Type	PD Acquisition Host	PD Inoculation Host	ELISA +	Culture +	ELISA +	Culture +	
¥ 1	Annual Bluegrass	Annual Bluegrass	Tests in	Tests in Progress		Tests in Progress	
	Annual Bluegrass	Grapevine	Tests in Progress		Tests in Progress		
	Cheeseweed	Cheeseweed	Tests in	Tests in Progress		Progress	
	Cheeseweed	Grapevine		Tests in Progress		Tests in Progress	
	Common Sunflower, wild-type	Common Sunflower, wild-type	Tests in Progress		Tests in Progress		
	Common Sunflower, wild-type	Grapevine	Tests in Progress		Tests in Progress		
Weed	Goosefoot	Goosefoot	0/0	0/0	0/0	0/0	
weed	Goosefoot	Grapevine	0/1	0/1	0/0	0/0	
	London Rocket	London Rocket	Tests in	Progress	Tests in	Progress	
	London Rocket	Grapevine	Tests in	Progress	Tests in	Progress	
	Spanish Broom	Spanish Broom	Tests in	Progress	Tests in	Progress	
	Spanish Broom	Grapevine	Tests in	Progress	Tests in	Tests in Progress	
	Tree Tobacco	Tree Tobacco	Tests in Progress		Tests in Progress		
	Tree Tobacco	Grapevine	Tests in Progress		Tests in Progress		
	Annual Ryegrass	Annual Ryegrass	Tests in Progress		Tests in Progress		
	Annual Ryegrass	Grapevine	Tests in Progress		Tests in Progress		
	Black Mustard	Black Mustard	Tests in Progress		Tests in Progress		
	Black Mustard	Grapevine	Tests in Progress		Tests in Progress		
	Blando Brome	Blando Brome	1/4	1/4	4/4	3/4	
	Blando Brome	Grapevine	2/4	1/4	0/4	1/4	
	Clover, New Zealand White	Clover, New Zealand White	Tests in	Progress	Tests in	Progress	
	Clover, New Zealand White	Grapevine	Tests in Progress		Tests in Progress		
	Clover, Hykon Rose	Clover, Hykon Rose	Tests in Progress		Tests in Progress		
	Clover, Hykon Rose	Grapevine	Tests in Progress		Tests in Progress		
Cover Crop	Cowpea, California Blackeye	Cowpea, California Blackeye	4/5	2/5	5/5	0/5	
contraction of the	Cowpea, California Blackeye	Grapevine	3/5	0/5	2/5	0/5	
	Fava Bean, Windsor	Fava Bean, Windsor	2/5	0/5	1/5	1/5	
	Fava Bean, Windsor	Grapevine	1/5	0/5	4/5	0/5	
	Field Pea, Miranda	Field Pea, Miranda	Tests in Progress		Tests in Progress		
	Field Pea, Miranda	Grapevine	Tests in Progress		Tests in Progress		
	Meadow Barley	Meadow Barley	Tests in Progress		Tests in Progress		
	Meadow Barley	Grapevine	Tests in Progress		Tests in Progress		
	Oat, California Red	Oat, California Red	Tests in Progress		Tests in Progress		
	Oat, California Red	Grapevine	Tests in Progress		Tests in Progress		
	Sweetclover, White	Sweetclover, White		Tests in Progress		Tests in Progress	
	Sweetclover, White	Grapevine	Tests in Progress		Tests in Progress		

CONCLUSIONS

Bell pepper, cotton, black nightshade, common groundsel, Evening Sun sunflower, horseweed, Zorro annual fescue, birdsfoot trefoil, and sudangrass did not sustain infection after needle-inoculation with *Xf*, indicating that these plants are very unlikely to harbor *Xf* infection in the field. This is particularly good news for horseweed since it is an extremely common weed in vineyards and is reported to be resistant to herbicides. In their PD management program, growers can choose to target weeds other than those identified here, knowing that these species do not sustain infection with *Xf*. In addition, growers can safely select

Zorro annual fescue, birdsfoot trefoil, and sudangrass as cover crops with confidence that their choice will not contribute to PD spread in their vineyards.

We recovered Xf from at least 50% of test plants for alfalfa, basil, cheeseweed, London rocket, Spanish broom, black mustard, Blando brome, Hykon Rose clover, and White sweetclover, indicating that these can serve as hosts for Xf in the field. We obtained isolates from three-46% of needle-inoculated plants for lima bean, tomato, wild-type sunflower, goosefoot, tree tobacco, annual ryegrass, New Zealand White clover, cowpea, fava bean, Miranda field pea, and meadow barley. The results from the transmission studies using these plants (pending) should provide a better understanding of their potential as alternative hosts for Xf in the field, since needle-inoculation is a severe and unnatural form of infection that is unlikely to happen in the field. As in the case of the goosefoot, we found that we could obtain isolates from a needle-

inoculated plant, but that it was a poor host overall for PD and both vectors tested. Therefore, goosefoot is unlikely to serve as a source or reservoir of *Xf* in the field. If these plants have natural defenses against acquiring or sustaining a *Xf* infection when needle-inoculated with millions of bacteria, it is likely that an infection by a vector transmitting far fewer bacterial cells would be sustained. However, there are insect-pathogen-plant interactions involved that must be tested before such a conclusion can be made definitively. Further studies mimicking more natural acquisition and transmission using insects should be done for a more complete understanding of the roles each plant and vector species might play in the field.

Alfalfa and Blando brome are good hosts for *Xf*, GWSS, and STSS, indicating that they can serve as a reservoir of *Xf* and source of infection in the field for these vectors. Both GWSS and STSS successfully transmitted *Xf* between alfalfa plants, between Blando brome plants, from alfalfa into grapevines, and from Blando brome into grapevines. These two plant species (one a crop plant and the other a cover crop) should not be around or in vineyards where *Xf* or sharpshooters are present.

GWSS successfully transmitted Xf between basil plants, from basil to grapevines, between cowpea plants, between tomato plants, and from fava bean to grapevines, but not between fava bean plants, or from cowpea to grapevines. STSS also successfully transmitted between fava bean plants, but not from fava bean into grapevines, between cowpeas, or from cowpea into grapevines. It is possible that Xf isolates were obscured by other microbes present in the plants and on the media plates (cowpea and fava bean contain numerous other microbes that grow on media plates for PD), and positive transmission occurred, but was not detected. It also is possible that these plant species would not naturally serve as acquisition sources by these vectors, but because they were unnaturally needle-inoculated, some transmission did occur. Pending further results, careful consideration should be applied when using cowpea or fava bean as cover crops in vineyard areas with known Xf infection, or sharpshooter populations, since they can serve as sources. In the unlikely event that basil is grown near vineyards, it could may be a major contributor to the spread of PD, since both GWSS and STSS favor this host, and it could sustain high populations of vectors and harbor Xf. The final transmission results (pending) will provide a better understanding of which plant hosts, in combination with GWSS or STSS vectors, are more important in the epidemiology of this plant pathogen.

REFERENCES CITED

Costa, H. S., E. Raetz, and T. R. Pinckard. 2004. Plant hosts of *Xylella fastidiosa* in and near southern California vineyards. Plant Disease 88: 1255-1261.

- Freitag, J. H. 1951. Host range of the Pierce's disease virus of grapes as determined by insect transmission. Phytopathology 41:920-932.
- Hill, B. L. and A. H. Purcell. 1995. Acquisition and retention of *Xylella fastidiosa* by an efficient vector, *Graphocephala atropunctata*. Phytopathology 85: 209-212.
- Hill, B. L. and A. H. Purcell. 1997. Populations of *Xylella fastidiosa* in plants required for transmission by an efficient vector. Phytopathology 87: 1197-1201.
- National Academy of Science, National Research Council. 2004. California agricultural research priorities: Pierce's Disease. The National Academies Press, Washington, D.C.
- Purcell, A. H. and S. R. Saunders. 1999. Fate of Pierce's disease strains of *Xylella fastidiosa* in common riparian plants in California. Plant Dis. 83: 825-830.
- Raju, B. C., A. C. Goheen, and N. W. Frazier. 1983. Occurrence of Pierce's disease bacteria in plants and vectors in California. Phytopathology 73:1309-1313.
- Raju, B. C., S. F. Nome, D. M. Docampo, A. C. Goheen, G. Nyland, and S. K.Lowe. 1980. Alternative hosts of Pierce's disease of grapevines that occur adjacent to grape growing areas in California. Am. J. Enol. Vitic . 31: 144-148.
- Shapland, E. B., K. M. Daane, G. Y. Yokota, C. Wistrom, J. H. Connell, R. A. Duncan, and M. A. Viveros. 2006. Ground vegetation survey for *Xylella fastidiosa* in California almond orchards. Plant Disease 90: 905-909.

Statewide IPM Program.2007. Agriculture and Natural Resources, University of California

(http://www.ipm.ucdavis.edu/PGM/r302700999.html)

Wistrom, C. and A. H. Purcell. 2005. The fate of *Xylella fastidiosa* in vineyard weeds and other alternate hosts in California. Plant Disease 89:994-999.

FUNDING AGENCIES

Funding for this project was provided by the CDFA Pierce's Disease & Glassy-winged Sharpshooter Board.

ACKNOWLEDGEMENTS

We thank Richard Stouthamer and Robin Bromley for sequencing our *Xf* to verify the strain, Crystal May for tireless help in rearing our insect colonies, performing experiments, and collecting samples, Jung-Joon Park for assisting needle inoculations and Carmen Gispert for providing infected grapevines from the field as our source plants. Chuck Farrar was instrumental in helping us through the first year of this project. Sunridge Nursery donated non-infected grapevines for use as test plants, and we are grateful for their contribution.