ENGRAEING MULTI-COMPONENT RESISTANCE TO PIERCE'S DISEASE IN CALIFORNIA GRAPEVINE ROOTSTOCKS

Principal Investigator: Abhaya M. Dandekar
Dept. of Plant Sciences
University of California
Davis, CA 95616
amdandekar@ucdavis.edu

Cooperator: Andrew Walker
Dept. of Vitic. & Enol.
University of California
Davis, CA 95616
awalker@ucdavis.edu

Cooperator: Ana M. Ibáñez
Dept. of Plant Sciences
University of California
Davis, CA 95616
amibanez@ucdavis.edu

Cooperator: Sandie Uratsu
Dept. of Plant Sciences
University of California
Davis, CA 95616
sluratusu@ucdavis.edu

Cooperator: Kourosh Vahdati
Dept. of Plant Sciences
University of California
Davis, CA 95616
kvahdati@ucdavis.edu

Cooperator: David Tricoli
Dept. of Plant Sciences
University of California
Davis, CA 95616
dmtricoli@ucdavis.edu

Cooperator: Cecilia Aguero
Dept. of Vitic. & Enol.
University of California
Davis, CA 95616
caguero@ucdavis.edu

Cooperator: Ana M. Ibáñez
Dept. of Plant Sciences
University of California
Davis, CA 95616
amibanez@ucdavis.edu

Cooperator: Sandie Uratsu
Dept. of Plant Sciences
University of California
Davis, CA 95616
sluratusu@ucdavis.edu

Reporting Period: The results reported here are from work conducted July 2011 to September 2011.

ABSTRACT
We propose to develop transgenic grapevine rootstocks resistant to Pierce’s disease (PD) using new transformation protocols for the commercially relevant grapevine rootstocks ‘101-14’ and ‘1103-P.’ Our genetic approach involves developing transgenic rootstocks that deliver therapeutic proteins like NE-CB that can protect an untransformed scion from PD. Our approach is to improve grapevine transformation, exploring the possibility of in planta transformation of shoot apical meristems (SAM). We have successfully isolated SAM tissues from grapevine rootstocks ‘101-14’ and ‘1103-P’ and from ‘Thompson Seedless’ as a control. These SAM tissues are being tested for regeneration potential using different media and hormone concentrations that have worked in other grapevine cultivars. The outcome of this research would be the successful development of a more efficient and rapid transformation system for commercially relevant grapevine rootstock and scion varieties using SAM.

LAYPERSON SUMMARY
Current strategies for Pierce’s disease (PD) control emphasize deploying transgenic rootstocks that deliver PD control to the untransformed scion. Present technology must be improved to effectively generate transgenic, PD-resistant versions of preferred commercial rootstocks like ‘101-14’ and ‘1103-P.’ We propose to refine different components of the current transformation protocol for greater efficiency, allowing more rapid production and testing of plants. We will transform rootstock ‘110-14’ with an existing vector that incorporates a chimeric protein (NE-CB) to provide enhanced resistance to PD in the scion. We have already initiated development of a more efficient and rapid transformation system for grape rootstocks.

INTRODUCTION
Several presentations at the 2010 Pierce’s Disease Symposium highlighted transgenic strategies using various promising transgenes with potential for conferring resistance to Xylella fastidiosa (Xf), the causal agent of Pierce’s disease (PD). However, most such projects have not yet demonstrated such control in commercially significant rootstocks (Dandekar, 2010; Gilchrist, 2009; Labavitch, 2010; and Lindow, 2009). This is partly because the current grapevine transformation and regeneration system was developed at UC Davis a decade ago in rootstocks and scion varieties like Vitis vinifera 'Thompson Seedless' (Aguero et al., 2005b, 2006). This system is cumbersome and slow because it uses embryogenic callus developed from young anthers, a tissue available for one brief period during each growing season. It takes around ~6-8 months to generate transgenic somatic embryos from cell lines derived from anther tissue. Additionally, somatic embryogenic callus lines are not available for some widely used commercial rootstocks such as ‘101-14.’ To overcome this hurdle, we are developing a transformation system using meristematic stem cells present in the shoot apical meristem (SAM). In plants like grape, all aboveground plant parts are generated from a cluster of stem cells present in the central dome of the SAM (Sablowski, 2007). Genetic factors regulated through cytokinin signaling determine and control the number of stem cells (Gordon et al., 2009). Several research- and commercial-scale transformations use meristem tissue from different crops. Use of SAM for transformation has occurred for a limited number of grapevine varieties. Mullins et al. (1990) co-cultivated adventitious buds of Vitis rupestris ‘St. George’ rootstock with Agrobacterium and produced transgenic plants. However, the methodology was never repeated. Mezzetti et al. (2002) transformed V. vinifera ‘Silcora’ and ‘Thompson Seedless’, cultivars with a strong capacity to differentiate adventitious shoots, using a meristematic tissue culture system. The culture type was unique and the overall application to other cultivars is unclear. Levenko and Rubtsova (2000) used in vitro internode explants to transform three V. vinifera scions and a rootstock, but did not provide sufficient details for the technique to be repeated. Dutt et al. (2007) described a simple transformation system for ‘Thompson Seedless’ using explants from readily obtainable micropropagation cultures. Tissues from etiolated cultures and meristem winding using fragmented meristems gave the best results. This latter system has not been tested in many rootstocks. Taken together, these studies indicate that SAM is an interesting tissue to investigate, particularly since it is available all year. Additionally, much is now known about
various developmentally regulated genes in plants like *Arabidopsis* that suggests how hormone input can be used to manipulate the developmental patterns of SAM (Galinha et al., 2009).

OBJECTIVES
The goal of this project is to develop a shoot apical meristem-based regeneration system to produce transgenic grapevine rootstocks to control PD. This goal will be accomplished by two activities:

- **Activity 1:** Develop a SAM-based regeneration system for important rootstocks.
- **Activity 2:** Transform, select, regenerate, and confirm transgenic grapevine plants using this new system.

We have focused on activity one, the development of a regeneration system using stem cells present in the shoot apical meristem.

RESULTS AND DISCUSSION

Activity 1: Develop a shoot apical meristem regeneration system for grapevines that provides faster, more efficient production of transgenic plants.

Meristematic domes contain stem cells that make all aboveground parts of the plant (Sablowski, 2007; Gordon et al., 2009). Our first step has involved developing expertise and proficiency at dissecting and excising the meristematic dome from field-grown ‘101-14’ and ‘1103-P’ rootstocks, using ‘Thompson Seedless’ as a control. A similar technique is used routinely for pathogen elimination at UC Davis Foundation Plant Services. We have worked closely with Adib Rowhani and his colleagues to learn the best technique for excising a SAM. A pictorial outline of the process with ‘101-14’ is shown (**Figure 1**). The sterile meristematic tissues are then cultured to examine their potential for organogenesis or somatic embryogenesis using different hormone concentrations and combinations. We are currently investigating various hormone and media compositions to identify those that lead to proliferation of the SAM; some are described below.

![Figure 1](image-url). Process for the excision of shoot apical meristem (SAM) from ‘101-14’ grapevine shoot tips.

We have been following published protocols that use different hormone concentrations and combinations to proliferate SAMs and induce a “meristematic bulk” (MB) (Mezzetti et al. 2002, Dhekney et al 2011). This is done using benzyladenine (BA), 2,4-dichlorophenoxyacetic acid (2,4-D), and naphthaleneacetic acid (NAA). ‘101-14’ shoot tips were harvested and immediately dissected to produce explants composed of the apical meristem plus microscopic leaf primordia. Explants were immediately placed in Petri dishes containing induction media composed of Murashige and Skoog (MS) salts and vitamins, 0.1 g L⁻¹ myo-inositol, 30 g L⁻¹ sucrose and hormones 2,4-D and BA at four and five different concentrations, respectively (**Table 1**). There were three explants per treatment, replicated three times (nine explants total per treatment). The explants are transferred to fresh medium every three weeks and incubated in the dark at 25°C.
Table 1. Effect of BA and 2,4-D levels on somatic embryogenesis of ‘101-14’ grape rootstock.

<table>
<thead>
<tr>
<th>2,4-D mg L(^{-1})</th>
<th>0.1</th>
<th>0.2</th>
<th>0.5</th>
<th>1.0</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>B1</td>
<td>B2</td>
<td>B3</td>
<td>B4</td>
<td>B5</td>
</tr>
<tr>
<td>0.5</td>
<td>B6</td>
<td>B7</td>
<td>B8</td>
<td>B9</td>
<td>B10</td>
</tr>
<tr>
<td>1</td>
<td>B11</td>
<td>B12</td>
<td>B13</td>
<td>B14</td>
<td>B15</td>
</tr>
<tr>
<td>2</td>
<td>B16</td>
<td>B17</td>
<td>B18</td>
<td>B19</td>
<td>B20</td>
</tr>
</tbody>
</table>

At this point, the domes have neither swelled nor proliferated in treatments B1 to B5, B7 to B10, B12 to B15, and B18 to B20. Treatments B6, B11, B16, and B17 show interesting morphogenesis: they are actively multiplying and possibly regenerating. The type of morphogenesis appears to be somatic embryogenesis but further time is required to confirm this.

We have also investigated using different media, using ‘Thompson Seedless’ (TS) as a control with which we have previous experience in culture and ‘101-14’ and ‘1103-P’ rootstocks. Shoot tips were harvested from field-grown material and immediately dissected to produce explants composed of the apical meristem plus microscopic leaf primordia. Explants were immediately placed in Petri dishes containing five different induction media, N1 to N5, composed of Nitsch and Nitsch (NN) salts and vitamins, 0.1 g L\(^{-1}\) myo-inositol, 20 g L\(^{-1}\) sucrose, 0.5 µM BA, and 0 µM (N1), 1 µM (N2), 5 µM (N3), 10 µM (N4), or 50 µM (N5) 2,4-D (Table 2). Here we are testing the ability of 2,4-D to induce somatic embryogenesis. There were 15 explants per treatment, replicated three times, for 45 explants per treatment. The explants have been transferred to fresh medium every three weeks and incubated in the dark at 25ºC. Resulting callus will be transferred to MS salts and vitamins medium with 1 µM BA and 11 µM Naphthaleneacetic acid (NAA) for development of somatic embryos.

Table 2. Effect of BA and 2,4-D levels on somatic embryogenesis of TS, ‘101-14’ and ‘1103-P’ grape rootstock.

<table>
<thead>
<tr>
<th>Medium</th>
<th>N1</th>
<th>N2</th>
<th>N3</th>
<th>N4</th>
<th>N5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA µM</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2,4-D µM</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

In addition to solid medium, we will try liquid medium to stimulate growth and differentiation. This has proved useful in both regeneration and transformation (Humberto Prieto’s personal communication, La Platina Research Station, National Agriculture Institute, Santiago de Chile). For the liquid phase, we will use “temporary immersion” (TI) in medium that is identical to the solid medium except for the absence of solidifying agent. This phase will be done in collaboration with David Tricoli at the UC Davis Parsons Plant Transformation Facility.

CONCLUSIONS

We are currently developing a shoot apical meristem-based grapevine regeneration system for faster, more efficient production of transgenic plants. We have initiated experiments with solid medium to study the effect of the cytokinin benzyladenine (BA) and the auxin 2,4-Dichlorophenoxyacetic acid (2,4-D) on somatic embryogenesis of TS and ‘101-14’, and ‘1103-P’ rootstocks. Transgenic rootstocks have been proposed as the best strategy to develop PD-resistant grapevines. However, current transformation protocols use embryogenic callus lines developed from anther culture for transformation and available cultures do not include rootstock genotypes currently used by growers in California. Also, current callus lines have been in culture for a long time and fresh new cultures must be selected, a task limited to a single season each year. This research seeks to overcome this seasonal limitation by developing a transformation system using a SAM, a starting material that is available year-round.

The results of this research will benefit other research groups working on transgenic strategies to control PD and has the potential to benefit research in other crops where transgenic approaches are sought to create pathogen resistance in rootstocks. The objective described in this proposal directly addresses the research priorities outlined in ‘attachment A’ of the 2010 PD/GWSS proposal RFA. It also addresses the top RSAP priority in the “Enabling tools- Development of grape regeneration and transformation systems for commercially important rootstocks” handout released in December 2009. This document outlines the “Top 5 to 10 Project Objectives to Accelerate Research to Practice” and updates the priority research recommendations provided in the report “PD/GWSS Research Scientific Review: Final Report” released in August 2007 by the CDFA’s Pierce’s Disease Research Scientific Advisory Panel.
REFERENCES CITED
tolerance to Pierce's disease and Botrytis in transgenic plants of Vitis vinifera L. expressing the pear PGIP gene. Mol.
Plant Path. 6:34-51.
and Chardonnay with the pear PGIP and GFP encoding genes. Vitis 45 1-8.
Proceedings of the 2010 Pierce’s Disease Research Symposium.
Dutt, M., Z.T. Li, S.A. Dhekney and D.J. Gray. 2007. Transgenic plants from shoot apical meristems of Vitis vinifera L.
20: 1149-1156.
Labavitch, J.M. 2010. Optimizing grape rootstock production and export of inhibitors of Xylella fastidiosa polygalacturonase
Disease Research Symposium.
BMC Biotechnology 2: 1-10.

FUNDING AGENCIES
Funding for this project was provided by the CDFA Pierce’s Disease and Glassy-winged Sharpshooter Board.