SUMMARY FINAL REPORT FOR CDFA AGREEMENT NUMBER 16-0510-SA

CHARACTERIZATION OF XYLELLA FASTIDIOSA PLANT CELL WALL DEGRADATION AND INHIBITION OF THE TYPE II SECRETION MACHINERY

Principal Investigator
Caroline Roper
Dept. Plant Pathology and Microbiology
University of California
Riverside, CA 92521
mcoreper@ucr.edu

Co-Principal Investigator
Dario Cantu
Dept. of Viticulture and Enology
University of California
Davis, CA 95616
dacantu@ucdavis.edu

Co-Principal Investigator
Andrew McElrone
USDA-ARS, Dept. Viticulture and Enology
University of California
Davis, CA 95616
ajmeelrone@ucdavis.edu

Co-Principal Investigator
Qiang Sun
Department of Biology
University of Wisconsin
Stevens Point, WI 54481
Qiang.Sun@uwsp.edu

Cooperator
John Labavitch
Dept. of Plant Sciences
University of California
Davis, CA 95616
jmlabavitch@ucdavis.edu

REPORTING PERIOD: The results reported here are from work conducted July 2016 to January 2019.

OBJECTIVES

- Qualitative analysis of the effect of cell wall degradation on the grapevine response to \(Xf\).
- Quantitative analysis of plant defense pathways induced by \(Xf\) cell wall degrading enzyme activity: biochemical and transcriptional studies.
- Inhibition of the Type II secretion system using natural products produced by grapevine microbial endophytes.

BACKGROUND INFORMATION

- *Xylella fastidiosa (Xf)* is the causal agent of Pierce’s Disease (PD) of grapevine.
- \(Xf\) colonizes the xylem and in doing so must be able to move efficiently from one xylem vessel element to adjacent vessels.
- Xylem conduits are separated by pit membranes (PMs) that are composed of cellulose microfibrils embedded in a meshwork of pectin and hemicellulose, and prevent the movement of air embolisms and pathogens within the xylem.
- The pore sizes of PMs range from 5 to 20 nM, which will not allow passive passage of \(Xf\) cells whose size is 250-500 x 1,000-4,000 nM.
- Functional genomics and *in planta* experimental evidence reveal that \(Xf\) utilizes cell wall-degrading enzymes (CWDEs) to actively digest the polymers within the PMs, thereby facilitating its movement throughout the xylem network.
- CWDEs are predicted to be secreted by the Type II secretion system (T2SS).
- Tylose formation is the predominant vascular occlusion associated with \(Xf\) infection, and excessive tylose development has been linked to the extreme susceptibility of *Vitis vinifera* wine grapes to PD.

HIGHLIGHTS

- Scanning Electron Microscopy (SEM) images of wild-type \(Xf\)-inoculated Cabernet Sauvignon grapevines show differences in tylose occlusions, pit membrane degradation, and \(Xf\) cell presence compared to images of vines inoculated with \(Xf\) endoglucanase mutants.
- SEM images of grapevines inoculated with the Δ\textit{engXCA1}/Δ\textit{engXCA2} double mutant strain show vessels free of tyloses and intact pit membranes.
- MicroCT scans show that vines inoculated with the Δ\textit{engXCA2} mutant strain have more tyloses than vines inoculated with the wild-type \textit{Xf} strain.
- MicroCT scans of vines inoculated with the Δ\textit{engXCA1}/Δ\textit{engXCA2} double mutant strain show relatively few vessels containing tyloses.
- MicroCT scans show that vines inoculated with wild-type \textit{Xf} have significant starch depletion.
- RNAseq analysis shows several differentially expressed genes between vines inoculated with wild-type \textit{Xf} and vines inoculated with \textit{Xf} endoglucanase mutants.

ACCOMPLISHMENTS ACHIEVED

- Completed 2016 and 2017 inoculation trials and sample harvesting.
- SEM imaging of early, middle, and late time-point samples from Cabernet Sauvignon for all treatments in 2016 and 2017.
- MicroCT scanning and analysis of early, middle, and late time-point samples from Cabernet Sauvignon for all treatments in 2016 and 2017.
- RNAseq analysis for early and middle time-point samples in 2016 and the early time-point samples in 2017.
- Acquired qualitative and quantitative evidence that \textit{Xf} endoglucanases play a role in facilitating host tylose production.