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Layperson summary of project accomplishments 
Resistant cultivars of agricultural crops are integral to sustainable integrated disease management strategies. 
Our previous work indicated that grapevines that express the PdR1 gene exhibit resistance against Xylella 
fastidiosa, and are likely to slow the spread of X. fastidiosa among vineyards. In the current project, we 
have tested the generality of our previous observations, by testing PdR1 resistant and susceptible genotypes 
into our vector transmission experiments and integrating greater biological detail into our epidemic 
modeling work. Our results suggest that the PdR1 gene may lengthen the incubation period, increasing X. 
fastidiosa transmission, but induced resistance conferred by the gene may ultimately reduce spread over the 
long-term. Vector feeding preference, host resistance, and transmission are clearly dynamic, changing over 
the course of disease progression. It also remains unclear how growers may incorporate these hybrid plants 
into their production; we found that the longer the planned age of a vineyard, the greater the area that 
growers should plant with PdR1 vines.  
 
List of objectives 
Specifically, we ask, under what ecological conditions and spatial arrangements will the use of PdR1 vines 
reduce X. fastidiosa spread and maximize economic benefits to growers? The research consists of three 
objectives:  
1. Test the effects of PdR1 resistant plants on vector feeding preference and transmission of X. fastidiosa  
2. Model the optimal mixture of PdR1 and susceptible grapevines to reduce X. fastidiosa spread and 

maximize economic return  
3. Estimate dispersal of insect vectors from field population data  
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Relevance statement 
Development of grape cultivars resistant to Xylella fastidiosa is critical for effective and durable 
management of Pierce’s disease. However, some forms of plant defense may enhance the risk of an 
epidemic. Our results confirm previous work in that PdR1 resistant plants exhibit partial resistance to X. 
fastidiosa, resulting in reduced bacterial populations and reduced PD symptom severity. However, 
because X. fastidiosa is able to reach moderate population sizes in resistant plants, there is still significant 
vector transmission from these plants. Importantly, because of reduced symptom severity and vector 
feeding preference for healthy grapevines, transmission from resistant plants can be greater under some 
conditions. These results suggest that there may be a window of time where PdR1 grapevines could act as 
reservoir hosts, amplifying vector transmission. 

A critical question remains, under what ecological conditions, and for how long, could PdR1 
vines amplify transmission? We are working to address this question through epidemiological modeling. 
We also are working to describe conditions under which different mixtures of PdR1 resistant and 
susceptible grapevines would maximize economic return for growers. Our bioeconomic modeling work 
suggests that a mixture of grapevines, with relatively more PdR1 than susceptible would be optimal when 
1) long-distance dispersal (but still within a vineyard) occurs and 2) when growers are interested in 
maximizing long-term gain. Overall, while there is some concern that PdR1 vines could enhance X. 
fastidiosa spread in the field, our results suggest that these partially resistant vines hold promise to greatly 
improve Pierce’s disease management. The key question remains to develop strategies to optimize their 
use in vineyards under a variety of realistic conditions. 
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Abstract 
Host resistance against vector-borne plant pathogens is a critical component of integrated disease 
management. However, theory predicts that traits that confer tolerance or partial resistance can, under 
some ecological conditions, enhance the spread of pathogens and spillover to more susceptible 
populations or cultivars. The host selection behavior of vectors based on infection status appears to be key 
in driving epidemic risk from tolerant hosts. At the same time, while recent theory has further emphasized 
the importance of infection-induced host selection behavior by insect vectors for plant disease 
epidemiology, experimental tests on the relationship between vector feeding preference and transmission 
are lacking. Such tests are critical to inform future developments of theory. Here we test how vector 
feeding preference mediates transmission from hybrid grapevine cultivars providing defense against the 
pathogenic bacterium Xylella fastidiosa, conferred by the PdR1 gene. We measure a range of 
epidemiologically relevant parameters in a series of vector transmission experiments and show that 1) 
vector feeding preference changes over the course of disease progression, 2) vector feeding preference is 
clearly important but does not predict transmission alone, and 3) the duration of the incubation period, in 
which plant hosts are infectious but asymptomatic, is likely when most vector transmission occurs. Our 
results suggest, consistent with theory, that the PdR1 gene may lengthen the incubation period, increasing 
X. fastidiosa transmission, but induced resistance conferred by the gene may ultimately reduce spread 
over the long-term. Vector feeding preference, host resistance, and transmission are clearly dynamic, 
changing over the course of disease progression, in X. fastidiosa pathosystems and likely other systems. 
Understanding these dynamics is critical for broader insights into the epidemiology of vector-borne plant 
pathogens. Below we present a detailed report of work done in this project. 
 
Introduction 
Host defense against pathogens is critical for determining disease epidemics broadly. Defense against 
pathogens in agricultural crops is one of the most successful and durable strategies to manage agricultural 
diseases (Power 1990; Mundt 2002; Gilligan 2008). Defense against pathogens can be broadly 
categorized as either resistance or tolerance. Resistance alleviates the fitness costs of infection by 
reducing the pathogen population in host tissues; tolerance alleviates the fitness costs by ameliorating 
disease symptoms with little effect on pathogen population size (Boots 2008). Variation among hosts in 
tolerance and resistance can be maintained over evolutionary timescales through ecological feedbacks 
(Best et al. 2008), and has important epidemiological consequences (Dwyer et al. 1997; Lloyd-Smith et 
al. 2005; Boots 2008; Laine et al. 2011; Borer et al. 2016). Generally, tolerance traits are expected to 
increase the prevalence of a pathogen within a host population (Roy and Kirchner 2000; Miller et al. 
2006; Best et al. 2008; Zeilinger and Daugherty 2014). 

While variation in host defense may play an important role in vector-borne pathogen spread—as 
seen broadly with directly transmitted pathogens—this question has received relatively little attention in 
the literature. Moreover, we might expect the relationships between defense and vector transmission to be 
distinct from that of directly transmitted pathogens because of the complexity of vector transmission and 
host selection (Zeilinger and Daugherty 2014; Sisterson and Stenger 2018). A recent flourishing of theory 
on plant disease epidemiology has sought to describe the range of influences that host selection by vectors 
may have on pathogen spread. Much of this work is focused on vector feeding preferences dependent on 
infection status of host as well as infection status of the vector itself.  

Early models showed that vector preference conditional on infection status could enhance spread 
of pathogens during early stages of an epidemic (Kingsolver 1987; McElhany et al. 1995). More recent 
models have provided greater nuance by distinguishing effects of behaviors around attraction/settling vs. 
leaving/departure of vectors (Sisterson 2008; Shaw et al. 2017; Donnelly et al. 2019), combining effects 
of preference conditional on infection status of the vector as well as of the host (Roosien et al. 2013; 
Shaw et al. 2017; Donnelly et al. 2019), exploring the implications for different modes of transmission—
whether characterized as persistent or non-persistent transmission (Shaw et al. 2017; Donnelly et al. 
2019), and exploring the intersection of vector preference and multi-species host communities on spread 
(Shoemaker et al. 2019). 
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Vector feeding preference conditional on infection status of hosts or of the vector itself, i.e., 
“infection-induced vector preference”, has been documented empirically in numerous plant disease 
systems, including those caused by fungal, bacterial, and viral pathogens (reviewed by Eigenbrode et al. 
2018). The above mentioned modeling work has emphasized the importance of infection-induced vector 
preference on transmission and spread. Specifically, Shaw et al. (2017) used a sensitivity analysis of their 
model to predict that components of vector preference had less impact on pathogen spread than life 
history traits, but that spread remained sensitive to infection-dependent leaving and attraction rates of 
vectors. However, few empirical studies have attempted to measure the role that preference plays in 
transmission. And thus the widespread theoretical predictions on the influence of vector preference on 
pathogen spread remain largely untested. Furthermore, the dominant hypotheses describing how 
infection-induced vector preference arises from evolutionary processes—the host and vector manipulation 
hypotheses (Gandon 2018), similarly rely on untested theory linking vector behavior to pathogen spread 
and, in turn, pathogen fitness. 

A central challenge in measuring the relationship between vector behavior/manipulation and 
transmission is experimentally inducing variation in vector host choice and transmission concurrently. 
Del Cid et al. (2018) qualitatively considered vector transmission of X. fastidiosa between a “choice” 
experiment in which vectors were free to choose between an infected source grapevine and a healthy test 
plant vs. a “no choice” experiment in which vectors were sequentially confined to an infected plant then a 
healthy plant. The authors found striking differences in the transmission rates between these scenarios, 
suggesting that vector choice played an important role. However, preference or movement was not 
measured in the experiments, undermining any robust interpretations. Alternatively, some studies have 
shown that vector host selection varies dynamically as disease progresses (Blua and Perring 1992; Werner 
et al. 2009; De Moraes et al. 2014; Daugherty et al. 2017). However, the only study to our knowledge that 
showed an empirical relationship between vector preference and transmission was conducted by 
Daugherty et al. (2017), which showed that increasing vector avoidance of X. fastidiosa-infected 
grapevines as disease progressed coincided with reduced transmission to healthy host plants over different 
temperature regimes.  

Comparing vector preference and transmission among plant species or genotypes varying in 
levels and forms of defense could also offer a means to test for preference-transmission relationships. 
Tolerant hosts decouple the phenotypic responses of infection—which are often used by vectors in host 
selection (Eigenbrode et al. 2018)—from pathogen burden and therefore allow for a decoupling of the 
influences of preference and pathogen population size on transmission. Furthermore, as hypothesized by 
Zeilinger and Daugherty (2014), the interactions between different forms of defense and vector preference 
can have important epidemiological implications: traits conferring resistance against a pathogen should 
broadly reduce pathogen spread regardless of the particularlities of vector preference; however, pathogen 
spread can be greatly enhanced when hosts are tolerant to infection and vectors avoid diseased hosts; in 
such cases tolerant hosts can act as effective reservoirs. The precise interplay between host defense and 
vector transmission are critical for effective disease management because of the risk of disease spillover 
from partially resistant or tolerant hosts into nearby susceptible host populations (Sisterson and Stenger 
2018) as well as the durability of defensive traits against the evolution of pathogens (Watkinson-Powell et 
al. 2019). 

Xylella fastidiosa (family Xanthomonadaceae) is a xylem-limited bacterial plant pathogen and 
causes diseases in many crop species, including Olive Quick Decline Syndrome, Citrus Variegated 
Chlorosis, Pierce’s disease of grapevines, and leaf scorch of almond, oleander, and coffee (Sicard et al. 
2018). As suggested by the broad list of diseases, X. fastidiosa is an extreme generalist, associated with at 
least 350 botanical taxa (EFSA Panel on Plant Health 2015). Xylella fastidiosa is transmitted in a 
propagative persistent but non-circulative manner by xylem-feeding insect vectors in the family 
Ciccadellidae and superfamily Cercopoidea, with all xylem-feeding Hemiptera regarded as potential 
vectors (Sicard et al. 2018). To date, the infection-induced host selection behavior of five cicadellid 
vectors have been studied and all have shown avoidance of X. fastidiosa-infected symptomatic plant hosts 
but no discrimination between infected asymptomatic hosts and uninfected (Marucci et al. 2005; 
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Daugherty et al. 2011; De Miranda et al. 2013). Orientation through visual cues probably underlies this 
preference (Daugherty et al. 2011). The potential effects of vector infection status on preference has not 
been studied.  

Pierce’s disease of grapevines has led to widespread losses in agricultural production in 
California viticulture (~$100 million per year, Tumber et al. 2014). Furthermore, insecticide use to 
manage vectors of X. fastidiosa potentially harms biodiversity and provisioning of agroecosystem 
services (Daugherty et al. 2015). Alternatively, California vineyard managers have shown a strong 
interest in using resistant grapevines to manage Pierce’s disease (Zeilinger unpublished data). Recently, 
hybrids between domesticated grape Vitis vinifera and North American native congener V. arizonica, 
have shown promising levels of resistance against X. fastidiosa (Krivanek et al. 2006). Resistance is 
conferred by the PdR1 dominant locus, and while the precise mechanism of resistance is still unresolved, 
backcrossed lines harbor much lower populations of X. fastidiosa and exhibit negligible disease 
symptoms (Krivanek and Walker 2005). Interestingly, V. arizonica is native to southwestern United 
States and northern Mexico, where X. fastidiosa is endemic and where cultivation of susceptible 
grapevines is nearly impossible due to high disease pressure, although there are reasons that PdR1 
resistance arose through coevolution with X. fastidiosa (Riaz et al. 2018). 
 Based on current evidence, PdR1 hybrid grapevines are best characterized as being partially 
resistant; X. fastidiosa population sizes are 4 – 5 orders of magnitude lower in PdR1 vines than 
susceptible grapevines, population size can still far exceed that required for vector transmission (Hill and 
Purcell 1997; Krivanek and Walker 2005). Given that symptom development is very slow (Krivanek et al. 
2005) and insect vectors avoid diseased plants, there is significant risk that PdR1 grapevines could act as 
reservoir hosts of X. fastidiosa, enhancing vector transmission among vines and spillover to more 
susceptible vineyards (Zeilinger and Daugherty 2014; Sisterson and Stenger 2018). Specifically, we 
hypothesize that transmission from tolerant hosts could exceed that from susceptible hosts when 
increasingly severe disease symptoms lead to vector avoidance and lower acquisition (Fig. 1). 

We aimed to assess the risk of enhanced transmission by the efficient cicadellid vector 
Graphocephala atropunctata from inoculated PdR1 resistant grapevines and closely related susceptible 
vines through a combined preference-transmission experiment. We compared Pierce’s disease symptom 
severity, X. fastidiosa population size, vector attraction and leaving rates, vector acquisition rates, and 
vector transmission rates from PdR1 resistant and susceptible vines over multiple points of disease 
progression. We fit a series of non-linear models to transmission curves to test our hypothesis on the risk 
of enhanced transmission from PdR1 vines. Finally, we employed a machine learning approach—the 
elastic net algorithm—to test which set of transmission parameters best explained variation in 
transmission. From this we provide the best empirical test to date of the relationship between components 
of infection-induced vector preference and transmission.  

 
Materials and Methods 
Objective 1. Test the effects of PdR1 resistant plants on vector feeding preference and transmission of X. 
fastidiosa  
Plants and Insects 
 All resistant and susceptible genotypes were segregants of a cross between Vitis vinifera cv. 
Airen and a hybrid of V. rupestris x V. arizonica (b40-14 background), with resistance conferred by the 
PdR1c gene (Krivanek et al. 2006; Walker and Tenscher 2016). We repeated the transmission experiment 
over two years: in 2016, the Resistant genotype was line 07744-006 and the Susceptible genotype was 
line 07744-007; in 2017, we used two Resistant genotypes, 07744-094 and 07744-102, and two 
Susceptible genotypes, 07744-007 and 07744-092. For simplicity in any discussion of genotypes in the 
2017 experiment, below, we abbreviate with the last three digits: indicating the Resistant genotypes as 
094 and 102, and the Susceptible genotypes as 007 and 092. 
 In both years, transmission trials were conducted with green cuttings made from Resistant and 
Susceptible genotype plants; we grew the cuttings in 1-gal pots with a 5:1:1 mixture of Supersoil (Rod 
Mclellan Company, San Mateo, CA, USA), perlite, and sand in a greenhouse at the Oxford Tract, UC 
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Berkeley (average temperature 23.5°C, with ambient daylight). We added 1 tsp of Osmocote Plus 
fertilizer (N-P-K 15-9-12) about two months after planting. We watered the grapevines every 2 days and 
treated with fungicides for powdery mildew control as needed (at most every 2 weeks) with a rotating 
schedule of wettable sulfur (Sulfur DF®), potassium bicarbonate (Kaligreen®), trifloxystrobin (Compass 
O®), myclobutanil (Eagle®), and thiophanate-methyl (3336®) at label rates.  

To establish X. fastidiosa-infected plants, in May of both years, we needle inoculated 3-month-
old Resistant and Susceptible vines near the base of the main stem with 10 µl of a turbid suspension 
(OD600 > 1) of X. fastidiosa culture (STL isolate, originally isolated from a symptomatic grapevine in 
Napa Valley, CA, USA) in SCP buffer as described in Hill and Purcell (1995). In 2016, we needle 
inoculated two points with 5 µl; in 2017, we needle inoculated just one point with 10 µl. Test plants were 
mock-inoculated with 10 µl of SCP buffer only. 
 Colonies of Graphocephala atropunctata (Signoret) (blue-green sharpshooter, Hemiptera: 
Cicadellidae) were started from individuals collected from wild grape (Vitis californica Bentham), 
Himalayan blackberry (Rubus armenicus Focke), and common nettle (Urtica dioica L.) from Sonoma and 
Alameda counties, California, USA, in April and May, and in Humboldt county, CA, in June and July. 
We reared G. atropunctata on basil (Ocimum basilicum L.) changed weekly. Prior to transmission trials, 
we pre-screened all insects for X. fastidiosa infection by placing groups of 10 insects on greenhouse-
grown grapevines (cv. Cabernet Franc, certified free of X. fastidiosa infection by Foundational Plant 
Services, UC Davis) for 5-7 days. Plants were cultured 12 weeks later; all were free of X. fastidiosa 
infection in 2016 whereas in 2017 three trials were removed from analysis because of vector 
infectiousness prior to the trials. 
 
Transmission experiment 
  In both years, we paired one X. fastidiosa-free test plant of the Susceptible genotype and one 
inoculated source plant—either Resistant or Susceptible—in a BugDorm tent-style cage (61 cm3, BioQuip 
Products, Inc., Rancho Dominguez, CA, USA). Each plant was trimmed to a single stem and six main-
stem leaves one week prior to the trials. We paired Resistant genotype 094 source plants with Susceptible 
genotype 092 test plants and Resistant genotype 102 source plants with Susceptible genotype 007 test 
plants; for Susceptible source plants the test plant was of the same genotype. At the beginning of the 
trials, eight adult BGSS were introduced into each cage between 10:00 and 12:00 in the morning. Prior to 
introducing the insects, we chilled them for two minutes in a -20°C freezer to prevent them from escaping 
or dispersing immediately to a plant; we then introduced them in the middle of the cage, equidistant from 
the two plants. In 2016, we repeated the trials at 3 weeks, 8 weeks, and 12 weeks post-inoculation. In 
2017, we repeated the trials at 2, 5, 8, and 14 weeks post-inoculation. Additionally, due to the large 
number trials run in 2017, we ran the replicates in two temporal blocks, two weeks apart and using a 
randomized complete block design. Each combination of genotype and weeks post-inoculation was 
replicated 8 times in both years.  

Once the BGSS were introduced to the cage, we recorded the number of insects on each plant and 
in neutral space (cage walls and pots) repeatedly at pre-determined times from the start of the trials. In 
2016, these times were: 1 min, 5 min, 10 min, 15 min, 30 min, 45 min, 1 hr, 2 hr, 4 hr, 6 hr, 24 hr, 30 hr, 
48 hr, 3 d, 4 d, 5 d, 6 d, 7d, and 8 d. In 2017, we used the same time points but shortened the total 
duration of the trials to 4 d, because the 2016 data showed that the BGSS reached equilibrium in their 
movements by 4 d and this should reduce mortality during the trials. In 2016, 7% of insects died in our 
trials (27 out of 384 total); in 2017, 10% of insects died (107/1024). 

 
Ancillary studies on induced resistance 
 In 2016 we saw evidence of induced resistance in PdR1 Resistant plants at after eight weeks post-
inoculation as a strong decline in X. fastidiosa populations and vector transmission (see Results below). In 
2017 we investigated this with two ancillary studies.  

First, we measured a wide profile of secondary metabolites from inoculated source plants within 
our transmission experiment. At the end of each trial, we collected two leaf blades and a 3 cm section of 
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woody stem from each X. fastidiosa-infected source plant. Each sample was immediately frozen in liquid 
nitrogen and then stored at -20°C until chemical analysis. We collected samples only from genotypes 092 
Susceptible and 094 Resistant for logistical reasons.  

Second, we conducted a re-infection experiment. In June 2017, we needle inoculated a set of 
plants using the same four genotypes as described above. But here we repeatedly measured population 
size of X. fastidiosa in petioles using serial dilution at 3, 9, and 16 weeks post-inoculation. We then 
inoculated a random subset of these plants a second time at 17 weeks post-inoculation, and inoculated an 
additional set of plants that were free of X. fastisidiosa. This produced three treatments: 1) plants 
inoculated once in June; 2) plants inoculated once in October; and 3) plants inoculated twice. We then 
estimated X. fastidiosa population size from all plants at 21 and 26 weeks post-inoculation (from the first 
inoculation date). Sample size for each treatment-genotype combination was four plants. 

 
Bacterial culturing and qPCR  

At the end of the trials, we removed all insects and noted the severity of Pierce’s disease 
symptoms on the source plants using the 0 – 5 symptom scoring index developed by Guilhabert and 
Kirkpatrick (2005). Within three days after the trials finished, we estimated X. fastidiosa populations in 
the source plants by serial culturing of three petioles, and twelve weeks later we assayed the infection 
status of all test plants (Hill and Purcell 1995). At the end of the trials, insects were frozen at -80°C until 
we assayed them for X. fastidiosa infection status using qPCR. We extracted DNA from G. atropunctata 
heads using the Qiagen DNEasy Blood and Tissue kit (Hilden, Germany) as described in (Daugherty et al. 
2009). Our X. fastidiosa DNA target fragment was amplified on a 7500 real-time thermocycler (Applied 
Biosystems, Foster City, CA) using SYBR Green fluorophore and the PD0059 F+R primers designed by 
Sicard et al. (in review). We then estimated corrected baseline fluorescence and amplification efficiency 
using the algorithms described in Ruijter et al. (2009).  

 
Statistical analysis 
 We first tested for differences in transmission-associated variables among genotypes, weeks post-
inoculation, and interaction between genotype and weeks post-inoculation, resulting in ANCOVA linear 
models. In 2017, we included a block main effect but analyses were otherwise identical between 2016 and 
2017 experiments. We first tested for differences in Pierce’s disease symptom severity in source plants 
with a partial odds ordinal logistic regression model, because the response variable—PD symptom 
index—represented an ordinal categorical variable (Harrell 2015). We analyzed variation in population 
size of X. fastidiosa in inoculated source plants using a generalized linear model with quasi-Poisson 
distributed error to correct for over-dispersion. While the quasi-Poisson model showed modest non-
constant error variance, it performed much better than Poisson or negative binomial regression models 
(results not shown). 

We sought to test for preference of G. atropunctata vectors for X. fastidiosa-infected source 
plants or X. fastidiosa-free test plants by estimating attraction and leaving rates from the two plants. 
Zeilinger et al. (2014) developed a mechanistic bio-statistical model on movement of a single consumer 
between two simultaneous choices; Gray et al. (in review) then generalized this model for multiple 
consumers within a preference trial. We fit our repeated measures count data on G. atropunctata location 
to the generalized model of Gray et al. (in review) for each combination of plant genotype and weeks 
post-inoculation. We fit four model variants—representing null and alternative hypotheses on differences 
and mechanisms of preference—and selected the best set of models based on Aikake’s Information 
Criterion corrected for small sample size (AICc), as described in (Supplementary Information, Appendix 
A). We calculated 95% confidence intervals using the quadratic approximation method (Bolker 2008) and 
used multi-model averaging of all models with ΔAICc ≤ 7 (Burnham et al. 2011). This resulted in robust 
estimates and uncertainty for attraction rates and leaving rates from each source plant and test plant for 
each combination of plant genotype and weeks post-inoculation. See Supplementary Information, 
Appendix A for additional information on testing assumptions of the consumer movement model. 



	 9	

 For the analysis of vector acquisition and transmission of X. fastidiosa, we expected a priori 
potential non-linear dynamics. As such we fit a series of non-linear models, including two unimodal 
models, Holling Type IV and Ricker models, and two saturating or asymptotic models, Michaelis-Menten 
and Logistic Growth models, as well as a linear model as a “null hypothesis” (Supplementary Information 
Appendix B). Based on the best fitting model, we compared 95% confidence intervals of parameter 
estimates to infer if dynamics clearly differed between Resistant and Susceptible genotypes.  

We investigated which set of explanatory variables—measured from our experiments—best 
explained variation in infection status of test plants (i.e., vector transmission). For explanatory variables, 
we included resistance trait (i.e., whether source plant was Resistant or Susceptible), proportion of vectors 
infectious with X. fastidiosa, population size of X. fastidiosa in source plant, disease severity index, 
attraction rate toward source plant, attraction rate toward test plant, leaving rate from source plant, leaving 
rate from test plant. The attraction and leaving rates were estimated for each trial using the Consumer 
Movement Model described earlier. We did not include weeks post-inoculation because our results of 
transmission dynamics indicate strong linearities between transmission over time. The best set of linear 
predictors with infection status was determined using the elastic net algorithm (Zou and Hastie 2005). The 
elastic net is combines the penalties of ridge regression and LASSO (Least Absolute Shrinkage and 
Selection Operator) algorithms. As such it is particularly well-suited for variable selection (i.e., shrinking 
coefficient estimates toward zero) when explanatory variables co-vary (James et al. 2013), which we 
expected a priori since the explanatory variables are all inter-related to the transmission process and 
because of the prevalence of correlations among attraction and leaving rates estimated from the CMM. 
Elastic net requires “tuning” two regularization parameters, α and λ, for which we used repeated k-fold 
cross-validation. We chose k = 5, chose the best parameter values by maximizing the area under the curve 
of the Receiver Operating Characteristic (ROC), and ran cross-validation 500 times to estimate a mean 
and SD for each coefficient estimate.  We assumed that the response variable—infection status of the test 
plant—was binomially distributed. 

We first analyzed data on plant secondary metabolites by examining broad differences using a 
multivariate ANOVA (MANOVA). The response variables were total phenolics in leaf blades, total 
phenolics in stems, and volatiles in leaf blades (he analysis of volatiles in stems could not be completed 
due to lack of tissue); the explanatory variables were resistance status (genotype 092 Susceptible vs. 
genotype 094 Resistant), weeks post-inoculation, and the interaction between the two. We report 
differences with Pillai’s trace, though Wilks’ λ, Hotelling’s trace, and Roy’s greatest root produced 
equivalent results (Johnson and Field 1993). Second, we explored differences between genotypes, and 
how these differences change over time, using principal components analysis of all 105 secondary 
metabolites isolated from our samples (Supplementary Material, Appendix C). Third, we investigated 
what set of secondary metabolites best explained variation in attraction and leaving rates of G. 
atropunctata to and from infected source plants using elastic net. In employing elastic net, we sought to 
find the best set of compounds that explained vector feeding behavior, similar to principal components 
regression (Pareja et al. 2009). Principal components regression and ridge regression—a special case of 
elastic net—produce similar results given that the first few principal components capture most variation in 
the data set (James et al. 2013). However, principal components regression does not naturally allow for 
selecting a subset of parameters; elastic net allows for such parameter or model selection through 
shrinking some coefficients to zero (James et al. 2013). 

For the reinfection experiment, if Resistant plants exhibited stronger induced resistance, we 
hypothesized that we would see the greatest decline in population size of X. fastidiosa in Resistant plants 
that had been previously inoculated. As such, we focused our analysis on 21 and 26 weeks post-
inoculation and only for the two treatments inoculated in October. We tested for divergent slopes in X. 
fastidiosa population size between treatments and resistance trait; because of low sample size, we 
combined genotypes based on presence of resistance trait. We adopted an ANCOVA-style model because 
we were specifically interested in the three-way interaction between week, treatment, and resistance trait. 
We used a generalized linear model with negative binomial error distribution because the X. fastidiosa 
population data were over-dispersed.  
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All analyses were performed in R 3.5.3 (R Core Team 2019). To fit consumer movement models, 
we used the optimx package with the Spectral Gradient optimization algorithm (Nash and Varadhan 
2011); to fit non-linear transmission models and perform model selection with AICc, we used the bbmle 
package (Bolker and R Core Team 2017). We used the rms package to perform partial odds ordinal 
logistic regression on Pierce’s disease symptom severity (Harrell 2019). For the elastic net algorithm in 
the analysis of defensive phytochemistry and transmission, we used the glmnet package and cross-
validated the tuning parameters using the caret package (Friedman et al. 2010; Kuhn et al. 2018). For the 
negative binomial GLM, we used the MASS package (Venables and Ripley 2002). 
 
2. Model the optimal mixture of PdR1 and susceptible grapevines to reduce X. fastidiosa spread and 
maximize economic return 
 

We built an economic extension to our vector-SI epidemic model, described in our proposal. We 
consider a scenario where two vineyards are grown adjacent to each other—one composed of a grape 
cultivar susceptible to Pierce’s Disease, Patch 1, and another composed of PdR1 resistant grapevines, 
Patch 2. For the economic model, we followed the framework of Macpherson et al. (2017) and assumed 
that yield is proportional to the density of healthy or asymptomatic hosts at harvest time, t.  

In our previous analyses of the bioeconomic model, we assumed that transmission was frequency-
dependent. However, after extensive research into the literature and model exploration, we adopted a 
density-dependent form of transmission here. Density-dependent transmission is generally thought to 
relate to pathogen systems where the pathogen spread beyond the immediate neighbors of an infected host 
is relatively common. As vector-borne pathogens often exhibit more frequent long-distance dispersals, 
adopting a density-dependent transmission term seems reasonable. Our model then takes the form: 

 
 

 

( ) ( )( ) ( ) ( )( )

( )( ) ( ) ( )( )

1 , , ,

, , ,

A
A A A B

B
B B B A

dI L I t I t I t
dt
dI L I t I t I t
dt

β δ δ δ µ δ ε

β δ δ δ µ δ ε

= − − + +

= − + +

 

 
Here, H(δ) represents monetary loss after harvest, as a function of the proportion of area planted to PdR1 
vines, δL, the value of PdR1 grapes relative to susceptible grapes, (1 – Rp), the density of diseased 
susceptible vines IA(t, δ) and the density of diseased PdR1 vines IB(t, δ). These last two terms are then 
modeled dynamically and using density-dependent transmission. The within-patch transmission rate, β, 
differs between grape genotypes while we assume that cross-patch transmission, µ, and primary infection, 
ε, are equal between genotypes.  
 
3. Estimate dispersal of insect vectors from field population data 

We expanded our original vision of the vector dispersal models, and focusing our efforts on 
modeling the spread of X. fastidiosa. We are using data collected by our research group and colleagues of 
disease surveys and BGSS abundance in ~30 commercial vineyard sites across Napa and Sonoma from 
2016 – 2018. We are currently working to fit a spatiotemporal stochastic epidemic model developed by 
Adrakey et al. (2017) to our Pierce’s disease survey data: 

 

 

𝐻(𝛿) = 𝛿𝐿!1 − 𝑅!! + 𝐼!(𝑡,𝛿) + 𝐼!(𝑡, 𝛿) 
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where 𝜆!(𝑡) is the instantaneous force of infection on host i at time t, β is the vine-to-vine “contact rate” 
or rate of secondary spread, ε is the primary or external infection rate, and K(dij, α) is the dispersal kernel. 
The dispersal kernel is a function of distance between uninfected host i and infected host j and the 
dispersal parameter α. We assume that dispersal takes the functional form of a normalized exponential 
decay function, following Adrakey et al. (2017). However, the dispersal function could take different 
forms (Neri et al. 2014). Note that the summation, 𝐾 𝑑!" ,� ,!∈!(!)  represents the dispersal from every 
infected host j to the uninfected host i at time t. The full likelihood function—in which the instantaneous 
force of infection is estimated for every uninfected host—is described in Adrakey et al. (2017). 

We built a customized MCMC sampler and implemented it in the R computing environment 
using the nimble package for Bayesian modeling, whereas the original model was implemented in C++ 
(Adrakey et al. 2017).  Implementing the MCMC sampler and model have required more extensive 
programming work than expected. However, the result will be a model that will be easier for additional 
researchers to use as it is implemented in the more widely used R computing environment. This work will 
be continued as part of our larger North Coast Pierce’s Disease project. We also plan to extend the model 
to explicitly incorporate vector dispersal in the model of pathogen dispersal. In any vector-borne disease 
system, pathogen dispersal should be a function of vector dispersal. From this work, we will be able to 
estimate vector dispersal directly from field data as well as the relationship between vector dispersal and 
pathogen spread. We will also be able to estimate the relative importance of vine-to-vine spread and 
primary infection rate, which Pierce’s disease scholars have been debating for some time. 

 
Results 
 
Pierce’s disease and X. fastidiosa population dynamics 
 In both years, inoculated Susceptible grapevines exhibited Pierce’s disease symptoms earlier and 
more severely than inoculated Resistant grapevines (Fig. 2a, b). In 2016, we could not detect a significant 
effect of week or difference in genotypes (week post-inoculation: estimate ± SE = 2.692 ± 6.885, Wald Z 
= 0.39, P = 0.696; week-by-genotype interaction: estimate ± SE = 1.137 ± 8.074, Z = 0.14, P = 0.888). In 
2017, we found a clear trend of increasing symptom severity over time and a clear difference between 
Susceptible genotype 007 and Resistant genotype 102 (week: estimate ± SE = 0.706 ± 0.141, Z = 5.00, P 
< 0.0001; week-by-genotype interaction between 007 and 102: (estimate ± SE = -0.463 ± 0.183, Z = -
2.53, P = 0.012). 
 Both Susceptible and Resistant vines harbored substantial populations of X. fastidiosa throughout 
our experiments, though populations in Resistant lines were consistently lower (Fig. 2c, d). In 2016, X. 
fastidiosa populations increased over time and were clearly greater in Susceptible compared to Resistant 
lines (week post-inoculation: estimate [95% confidence intervals] = 0.321 [0.0914, 0.660], t = 2.32; 
genotype: estimate [95% CI] = 2.96 [0.340, 6.94], t = 1.85). There was no clear interaction between 
weeks and genotype (estimate = -0.122 [-0.471, 0.128], t = -0.835), In 2017, we found no clear increase in 
X. fastidiosa populations over time (weeks: estimate = 0.0382 [-0.0262, 0.102], t = 1.18). However, X. 
fastidiosa populations were substantially lower in the Resistant genotypes than the Susceptible genotypes 
007, which was used as a baseline (Resistant line 094: estimate = -1.91 [-3.71, -0.448], t = -2.34; 
Resistant line 102: estimate: -1.86 [-3.83, -0.293], t = -2.11). 
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Vector host selection 
 Over both years of our experiment, G. atropunctata showed little discrimination between host 
plants in early trials, i.e., two to five weeks post-inoculation (Fig. 3, Supplementary Information 
Appendix A Tables A3 and A4). In 2016, G. atropunctata showed no preference for either host plant 
except for in trials with the Susceptible genotype at 12 weeks post-inoculation (Fig. 3, Table A3). Here, 
vectors showed slightly greater attraction rates toward the test plant and slightly lower leaving rates from 
the test plant relative to the inoculated source plant. However, the 95% confidence intervals were quite 
large (Fig. 3).  

In the 2017 experiments, differences in plant choice appeared earlier and showed greater 
differences. At two and five weeks post-inoculation, G. atropunctata showed a slight preference for test 
plants in trials with genotypes 092 Susceptible and 094 Resistant. In the other trials, they showed no 
preference, with the Fixed model being the best model to fit the data (Fig. 3, Table A4). At eight weeks 
post-inoculation, G. atropunctata showed greater attraction rates toward test plants relative to Resistant 
source plants (genotypes 094 and 102)—the difference being particularly significant with genotype 094 
(Fig. 3). At 14 weeks post-inoculation, G. atropunctata showed strong preference for test plants relative 
to Susceptible source plants (genotypes 007 and 092), realized mostly through different attraction rates, 
though leaving rates were slightly different as well. While vectors showed similar preferences in trials 
with Resistant genotypes, the differences were not as clear (Fig. 3, Table A4). 

Comparing across years, overall movement rates were not clearly greater in one year over the 
other. Attraction rates were on average greater in 2016 (2016 mean attraction rate = 0.713 hr-1; 2017 mean 
attraction rate = 0.633 hr-1) but leaving rates were much greater in 2017 (2016 mean leaving rate = 0.0165 
hr-1; 2017 mean leaving rate = 0.0673 hr-1). 
 
Vector acquisition and transmission 

For the vector acquisition analysis, unimodal models performed the best in both years. In 2016, 
the Ricker model fit the data best for both the Susceptible and Resistant genotypes (Supplementary 
Information Appendix B, Table B2). Because the Ricker model was selected for both genotypes, we can 
make inferences based on parameter estimates and 95% CI. While vector acquisition was consistently 
greater from Susceptible grapevines, the parameter estimates did not differ based on 95% confidence 
intervals (Fig. 4a, Table B3). The b parameter of the Ricker model determines the timing of peak 
acquisition (Bolker 2008), with peak acquisition occurring slightly earlier in trials with Resistant plants 
(1/b = 6.25 weeks post inoculation) than in trials with Susceptible plants (1/b = 6.58 weeks).  

In 2017, the Holling Type IV model fit the acquisition data best for both Susceptible and 
Resistant genotypes (Table B2). Here, vector acquisition was consistently greater from Susceptible than 
Resistant grapevines and—based on 95% CI of parameter estimates—was significantly so (Fig. 5b, Table 
B3). The peak of vector acquisition is predicted to be only slightly earlier for the Resistant lines (-2b/c = 
7.55 weeks) than for the Susceptible lines (-2b/c = 7.91 weeks). At the same time, the long-term vector 
acquisition rate is predicted to be much lower from the Resistant lines (a = 0.049) than from the 
Susceptible lines (a = 0.111) (Table B3), reflecting the lower peak acquisition rate from Resistant lines 
(Fig. 5b). Comparing between years, vector acquisition was overall greater and peaked earlier in 2016 
compared to 2017 (Figs. 5a and 5b). 
 For analysis of transmission to test plants, there was little overall clear separation among models, 
with AICc values being relatively similar (Supplementary Information Appendix B Table B4). In 2016, 
three models fit the data from the Resistant genotype equally well: the Logistic Growth, Ricker, and 
Linear models. However, examining the parameter estimates, the fits of the Logistic Growth and Linear 
models resulted in very high transmission rates at the y-intercept (i.e., at the start of the trials), which 
would be biologically implausible. In the end, we selected the Ricker model as it predicts a transmission 
rate near zero at the y-intercept. Likewise, the Logistic Growth, Ricker, and Linear models fit the data 
from the Susceptible genotype in 2016 similarly, though the Ricker model was slightly better. The a 
parameter determines the slope of the line near the origin, which is estimated to be much larger for the 
Resistant plants (a = 0.704) than for the Susceptible plants (a = 0.399) (Fig. 5c); however, the confidence 
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intervals for both estimates are large, making inferences difficult (Table B5). At the same time, 
confidence intervals of the b parameter estimates overlapped only slightly, suggesting a clearer difference 
in the time of peak transmission. Transmission from Resistant genotypes peaked earlier (1/b = 2.9 weeks 
post-inoculation) than transmission from Susceptible genotypes (1/b = 5.1 weeks) (Fig. 5c). Both curves 
suggest a similar probability of transmission rate at the peak (~ 0.75) 

In 2017, transmission was overall slightly greater from Resistant plants (total proportion of test 
plants infected = 0.234) than from Susceptible plants (0.203), though transmission from Resistant plants 
was much more dynamic (Fig. 5d). Fitting non-linear models to data from Susceptible genotypes in 2017 
resulted in the Ricker model being the best model, though Michaelis-Menten provided a similar fit (Table 
B4). In contrast, data from Resistant genotypes resulted in better separation among models, with the 
Holling Type IV model being selected as the best fit. Different models were selected as the best models, 
indicating qualitatively different dynamics for transmission from the Resistant and Susceptible genotypes. 
The low estimate of the a parameter (0.069) of Holling Type IV suggests that the long-term probability of 
transmission should fall to close to zero. This is similar to the predictions of the Ricker model, which 
always returns to zero after the peak (Bolker 2008). Peak transmission occurred at similar times for the 
Resistant 8.6 weeks) and Susceptible (9.0 weeks) genotypes (Fig. 5d). Comparing transmission between 
years, the peak transmission in 2017 was later and lower than in 2016 for both genotypes (Figs. 5c and 
5d).  

We used elastic net to assess the best set of explanatory variables that explained infection status 
of test plants (i.e., transmission). The set of regularization parameter estimates selected most frequently 
(mode) from cross-validation were α = 0 and λ = 5.46 in 2016, and α = 0.1, λ = 0.99 in 2017. When α = 
0, elastic net simplifies to ridge regression. That our estimates of α are close to or equal to 0 suggests 
strong co-variance among explanatory variables (James et al. 2013). The set of explanatory variables with 
consistently non-zero coefficient estimates were: presence of PdR1 resistance trait (i.e., whether the 
source plant was Resistant or Susceptible), proportion of vectors infectious with X. fastidiosa (i.e., 
acquisition rate), and leaving rates from test plants (Fig. 6). In 2016, the presence of PdR1 resistance trait 
was the best predictor, with leaving rates from the test plant being the second strongest predictor. In 2017, 
proportion of vectors infectious with X. fastidiosa was the best predictor; again, leaving rates from test 
plants was the second strongest predictor. In 2016, the coefficient estimate of the Resistant trait covariate 
was positive, whereas it was negative in 2017, indicating greater overall transmission from Susceptible 
plants in 2016 and greater overall transmission from Resistant plants in 2017. 
 
Analysis of secondary metabolites 
 We isolated 105 distinct secondary metabolites from our source plants: 20 phenolics from leaf 
blades, 21 phenolics from stems, and 64 volatiles from leaf blades, 28 of which were unidentified. 
Because of this large number of compounds, we tested for broad differences in total concentrations 
among these two classes (phenolics and volatiles) and two tissues (leaf blades and stems) using 
MANOVA. We could not detect any clear change in concentrations of phenolic and volatile secondary 
metabolites over time (Pillai’s trace = 0.157, F3,45 = 2.80, P = 0.051). However, we found that phenolics 
and volatiles clearly differed between Resistant and Susceptible source plants (Pillai’s trace = 0.241, F3,45 
= 4.76, P = 0.0058) and this difference increased over time (Fig. 6; interaction of resistance status by 
weeks post-inoculation: Pillai’s trace = 0.229, F3,45 = 4.46, P = 0.0079). This was more clear for total 
phenolics and total volatiles in leaf blades than for total phenolics in stems (Fig. 6; univariate ANOVA 
tests not shown). 
 To explore the phytochemical identities of Resistant and Susceptible source plants in a more 
unsupervised manner, we extracted principal components for all 105 compounds at each time post-
inoculation (Supplementary Material, Appendix C, Fig. C1). Overall, the first two principal components 
(PCs) captured between 12% and 50% of variation among all compounds, depending on the time point. 
Susceptible source plants tended to vary more across both PCs with Resistant source plants tending to 
cluster more tightly and within the variation of the Susceptible plants. However, at eight weeks post-
inoculation, Resistant plants showed equivalent amount of variation among replicates. At 14 weeks post-
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inoculation, we see clearer separation between Susceptible and Resistant plants in PC1 and PC2 which 
together explained 64% of total variance (Fig. C1).  
 We also investigated how different compounds might be associated with our estimates of 
attraction rates and leaving rates of G. atropunctata vectors in each cage using the elastic net algorithm. 
Here, we included all replicates from both Resistant and Susceptible vines and across all time points; we 
also included Pierce’s disease symptom severity as a predictor. For attraction rates, elastic net selected a 
subset of 8 secondary metabolites—plus Pierce’s disease symptoms—as the best set explaining variation 
in attraction rates (Fig. C2). Pierce’s disease symptom severity was the single best predictor of attraction 
rates, and negatively so. Some secondary metabolites that were negatively associated with attraction rates 
included vitisin A, kaempferol hexoside galactoside, isogeraniol, and quercitin-3-O-glucoside in leaves. 
On the other hand, the only compound that was clearly positively associated with attraction rates was 
coutaric acid 1. For leaving rates, the best value for the elastic net mixing parameter was α = 0, 
simplifying the algorithm to a ridge regression model and leading to no predictors being dropped from the 
final model. This suggests that the algorithm could not eliminate any compounds as having an effect on 
leaving rates. Nonetheless, examining the magnitude of coefficient estimates can provide some insight. 
Leaving rates were positively associated with quercetin-O-3-glucoside in stems, miyabenol C, 
unidentified volatile S, and unidentified volatile 6; leaving rates were negatively associated with vanilic 
acid glycoside, caffeic acid glycoside, and unidentified volatile 9 (Appendix C, Fig. C3). 
 
Reinfection experiment 
 In 2017, we tested for differences in population size of X. fastidiosa after either one or two 
inoculation events, spaced 17 weeks apart using all four genotypes. We found a clear overall reduction in 
population size from 21 weeks from the first inoculation to 26 weeks (coefficient estimate [95% CI] = -
0.467 [-0.922, -0.0121]). We were particularly interested in the three-way interaction between week, 
treatment, and resistance trait. In line with our hypothesis, Resistant genotypes that had been inoculated 
twice showed the greatest decline in X. fastidiosa population size (Fig. 6). However, this trend could not 
be detected statistically (coefficient estimate [95% CI] = -0.306 [-1.16, 0.547]). Refer to Supplemental 
Material Figure S1 for the full timeseries of X. fastidiosa population data. 
 
Bio-economic model of PdR1 vineyard 

In our simulations, we predict that growers who adopt a more short-term strategy—meaning that 
they are primarily focused on maximizing returns in a shorter time frame—should not plant PdR1 vines 
but should only plant susceptible vines (Fig. 8). However, growers who adopt a more long-term strategy 
should plant a mixture of PdR1 and susceptible vines. Generally, the longer the harvest time, the greater 
the area that growers should plant to PdR1 vines. These results should clearly depend on the 
epidemiological conditions experienced by growers. For future research, we are interested in investigating 
how different epidemiological conditions, motivated by our experimental results, will change optimal 
planting mixtures as well.  
 
Discussion 
 Vector-borne plant pathogens present serious threats to agricultural, horticultural, and 
silvicultural sustainability, as well as plant conservation (Gilligan 2008). Vector suppression through 
insecticide use is a common management strategy. However, given the harms from insecticides to insect 
biodiversity and ecosystem services as well as the questionable efficacy of insecticide use (Perring et al. 
1999), development of resistant cultivars for agricultural and horticultural provides an important 
management alternative. At the same time, previous theoretical work has highlighted that the precise form 
of defense is key: partially resistant or tolerant cultivars could increase the risk of disease spread and 
spillover (Zeilinger and Daugherty 2014; Sisterson and Stenger 2018).  
 We applied this theory to characterize defensive traits conferred by the PdR1 gene in grapevines 
against X. fastidiosa and provide insights into the epidemiological effects of managing Pierce’s disease 
with PdR1 grapevines. To do so, we compared X. fastidiosa populations, Pierce’s disease symptoms, 
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vector preference, vector acquisition, and transmission between PdR1 resistant and susceptible genotypes 
over time. We confirmed previous findings that PdR1 grapevines exhibit reduce symptom severity and 
harbor lower X. fastidiosa populations than susceptible genotypes (Krivanek and Walker 2005; Krivanek 
et al. 2005; Fritschi et al. 2007). In addition, we found that X. fastidiosa populations declined in PdR1 
vines beginning after eight weeks post-inoculation despite relatively mild symptoms. 
 To study host selection by G. atropunctata vectors, we examined both attraction and leaving rates 
between infected source plants and X. fastidiosa test plants. In 2016, we found few indications of 
preference between infected and healthy plants. However, in 2017, we found consistent evidence that G. 
atropunctata avoided infected Susceptible plants but only when disease symptoms became severe. All 
previous studies of preference of X. fastidiosa vectors found avoidance of symptomatic hosts (Marucci et 
al. 2005; Daugherty et al. 2017), including G. atropunctata (Daugherty et al. 2011). Early in the 
experiments, we found no preference, corroborating previous work showing that cicadellid vectors of X. 
fastidiosa do not distinguish between non-infected and asymptomatic infected hosts (Marucci et al. 2005; 
De Miranda et al. 2013). We also found that preference was more strongly realized through greater 
attraction rates to non-infected hosts, corroborating previous findings that cicadellid vectors orient using 
visual cues (Rashed et al. 2011; Daugherty et al. 2011). With infected PdR1 Resistant plants, we saw no 
differences in preference except at eight weeks post-inoculation in 2017. Here found greater attraction to 
healthy plants, suggesting a mechanism other than visual cues since disease symptoms were minimal. 
 Vector acquisition rates—measured as the proportion of vectors that became infectious—were 
clearly non-linear over the course of disease progression, following unimodal dynamics. The best 
unimodal model depended more on year than Resistant/Susceptible genotype: the Ricker model was best 
in 2016 and the Holling Type IV was best in 2017. The Ricker model returns to zero after the peak 
(Bolker 2008), suggesting that, in 2016, acquisition rates should reach zero over the long term. In 
contrast, in the Holling Type IV model, the long term dynamics are determined by the parameter a; the 
estimate of a for Susceptible genotype trials was more than double the estimate for the Resistant genotype 
trials suggesting that long-term acquisition would be much greater from Susceptible plants. While vector 
acquisition rates were consistently greater from Susceptible plants, the difference was clear only in 2017.  
 As with acquisition rates, vector transmission rates—measured as the proportion of healthy test 
plants that became infected—were also non-linear, following unimodal dynamics. In 2016, the Ricker 
model was the best model for both genotypes, peak transmission rate was similar between genotypes, but 
transmission from Resistant plants peaked earlier and declined faster. In 2017, the Ricker model was 
again the best model for transmission from Susceptible plants but the Holling Type IV was best for 
Resistant plant trials, suggesting qualitatively different dynamics. Transmission from Resistant plants 
may continue over the long term, though at very low rates. The timing of peak transmission was similar 
between genotypes but the peak transmission rate was nearly double from Resistant plants as from 
Susceptible plants. Note, however, that the separation in fits among models, based on AICc scores, was 
not as clear for transmission as for acquisition (Tables B2 and B4). Interestingly, the peak transmission 
rate from Resistant plants coincided with evidence that G. atropunctata vectors avoided Resistant infected 
plants. Both acquisition and transmission rates were consistently lower in 2017 than 2016, likely because 
we ran trials for eight days in 2016 but for only four days in 2017, reducing the time for both acquisition 
and transmission.  
 Contrary to predictions from theory (Fig. 1; Daugherty et al. 2017), we saw unimodal dynamics 
in transmission from both Susceptible and PdR1 Resistant grapevines. However, the available evidence 
suggests distinct mechanisms underlying these similar patterns. For transmission from Susceptible vines, 
our results broadly conform to our predictions of unimodal transmission dynamics: transmission increases 
early after inoculation coinciding with increasing population size of X. fastidiosa, then declines with 
increasing symptom severity and concomitant avoidance by vectors. For trials with Resistant vines, 
because of a lack of symptom development, the unimodal dynamics appear to be more strongly tied to X. 
fastidiosa population size; specifically, transmission appears to decline in later stages of infection because 
of declining X. fastidiosa population size. We saw substantial declines in population size after eight 
weeks post-inoculation in two of the three resistant genotypes that we tested—genotype 006 in 2016 and 
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genotype 102 in 2017. Based on the available evidence, we suggest that PdR1 gene may confer both 
partial resistance and partial tolerance against X. fastidiosa. 
 The unexpected findings of apparently induced resistance after eight weeks post-inoculation led 
us to test this further with a re-infection experiment, where we compared X. fastidiosa population size in 
Resistant and Susceptible vines after inoculating plants either only once or again at 17 weeks post-
inoculation. We hypothesized that Resistant vines that had previously been inoculated would show the 
greatest reduction in X. fastidiosa population size. While the trends in our data support this hypothesis, we 
were unable to clearly distinguish Resistant vines that had been inoculated twice vs. only once. This could 
be due to our small sample size, but also could be explained if the apparently late-season resistance was 
induced by phenology rather than prior exposure to X. fastidiosa.  
 While our re-infection study results were suggestive but inconclusive, our multivariate analysis of 
secondary metabolites showed that at 14 weeks post-inoculation Resistant grapevines clearly differed 
from Susceptible grapevines. Resistant vines had about half the total concentration of phenolic and 
volatile compounds in leaves relative to Susceptible vines. Additionally our PCA analysis showed much 
greater separation of Resistant and Susceptible vines at 14 weeks than at any other time point. Wallis et 
al. (2013) showed that concentrations of phenolic compounds in grapevine xylem tissue increased steadily 
throughout the season regardless of cultivar or X. fastidiosa infection status. In contrast, phenolic 
compounds in our infected PdR1 Resistant plants were greatest early in our experiment and plateaued 
later. Importantly, disease symptom severity (or lack thereof) was the single strongest predictor of vector 
attraction rates in our elastic net analysis, further corroborating our analysis and previous studies that G. 
atropunctata primarily uses visual cues to orient toward host plants (Daugherty et al. 2011). 

Recent theoretical work on the epidemiology of vector-borne plant diseases has emphasized the 
importance of vector behavior—specifically host selection behavior based on host infection status 
(McElhany et al. 1995; Sisterson 2008; Roosien et al. 2013; Shaw et al. 2017; Gandon 2018; Donnelly et 
al. 2019; Shoemaker et al. 2019). Meanwhile experimental work has succeeded in documenting a wide 
variety of infection-induced host selection behaviors in vectors (reviewed in Eigenbrode et al. 2018). 
However, to our knowledge, no study has yet to quantitatively test for an empirical relationship between 
infection-induced host selection and vector transmission. A few studies have suggested a positive 
association (Daugherty et al. 2011, 2017; Del Cid et al. 2018), but the findings of Jennersten (1988) 
suggest that vector preference does not predict transmission. Furthermore, disentangling which 
components of host selection behavior by vectors is most important for transmission would help to focus 
both theoretical and experimental work. 

We tested the relationship between transmission and the different components of vector feeding 
preference using estimates of attraction and leaving rates to/from both infected and non-infected hosts. 
These estimates were calculated from fitting the consumer movement model of Zeilinger et al. (2014) to 
our repeated measures dataset of vector location. The model provides estimates of these components of 
preference from a single experiment, enabling transmission to be measured concurrently. We once again 
used elastic net to assess the relative influence of each component of preference as well as other 
epidemiological parameters on transmission. Elastic net is ideal for statistical problems where one’s goal 
is variable selection among a set of co-varying predictors, as will likely be the case with any vector 
transmission experiment (James et al. 2013). It also provides conservative coefficient estimates compared 
to ordinary least squares regression, biasing estimates towards zero in order to reduce variance (James et 
al. 2013). From this analysis, we found that resistance trait (use of Resistant or Susceptible genotype), 
vector acquisition rate, and leaving rate from the non-infected plant were the most important predictors of 
transmission rate. These patterns were consistent over the both years of our experiment. The importance 
of leaving rate from healthy hosts supports the conclusions of (Nault and Ammar 1989), who suggested 
that transmission of persistent viruses was sensitive to tenure time on healthy hosts (where tenure time = 
leaving rate-1). Our findings appear to contradict the theoretical results of Shaw et al. (2017), who 
predicted that acquisition rate (βv in their model) and leaving rate of infectious vectors from non-infected 
hosts (ah and c2) had negligible influence on disease spread of persistently transmitted pathogens. At the 
same time, it’s possible that the influence of leaving rates and acquisition rates are bound up in other 
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parameters in the model of Shaw et al. (2017). For example, the importance of leaving rate from non-
infected plants in our experiment is likely because of its relationship with inoculation rate, which Shaw et 
al. (2017) predicted would be highly influential on spread. In addition, our analysis suggests that 
attraction rate to source plant has relatively little impact on transmission, contrary to the models of 
Sisterson (2008) and Shaw et al. (2017). However, the reduced attraction rates to infected plants we 
observed seem to be the only plausible explanation for our observed declines in transmission from 
Susceptible plants. And attraction rate to infected plants may be so closely tied with acquisition rate that 
our analysis was unable to partition variance to these different predictors effectively.  

Vector attraction rates and leaving rates were clearly important in driving transmission dynamics 
of X. fastiodiosa in our system. We observed reduced attraction rates toward diseased Susceptible plants 
that clearly coincided with a decline in transmission consistent with theory (Daugherty et al. 2017). At the 
same time, our results overall suggest that vector preference alone does not predict transmission, and can 
be misleading at times. For example, we detected reduced attraction rates toward Resistant source plants 
at eight weeks post-inoculation in our 2017 experiment. While we would again expect reduced 
transmission rates, we instead observed the highest transmission rates during that year’s experiment. 

The apparent inconsistencies of our results with theory are intriguing but may also relate to 
peculiarities of X. fastidiosa pathosystems. Most theory on vector feeding preference appears to be 
motivated by aphid-borne phloem-colonizing virus systems. As a xylem-limited bacterial pathogen, host 
plant responses to infection are likely to be quite different from phloem-colonizing viruses and other 
pathogens. Plant responses are likely to mediate much of the transmission dynamics shown here and in 
other studies (Blua and Perring 1992; Werner et al. 2009). More quantitative tests of the relationships 
between the components of vector feeding preference and transmission in a variety of systems will be 
critical to assessing the generality and explanatory power of current theory. 

While the use of resistant cultivars is a key component to integrated disease management in 
agriculture, such cultivars need to be assessed to ensure that they do not increase the risk of spillover or 
epidemics. Based on the available theory and our results, the greatest risk of transmission of vector-borne 
plant pathogens should occur within a window of disease progression when both pathogen burden and 
attractiveness to the vector are high (De Moraes et al. 2014). These two processes are clearly dynamic and 
may be governed by different mechanisms. For disease systems where vectors avoid symptomatic hosts, 
such as X. fastidiosa-associated diseases, the duration of the incubation period—in which hosts are 
infectious but asymptomatic—should be the period of greatest vector acquisition (Daugherty et al. 2017). 
Tolerance traits or even partial resistance traits could potentially extend the duration of the incubation 
period, increasing the risk of pathogen spread. Numerous other factors are likely to influence the duration 
of the incubation period, including water stress and temperature (Daugherty et al. 2017; Del Cid et al. 
2018). 

Our results indicate that PdR1 hybrid grapevines can produce transmission rates greater than 
those from susceptible vines, potentially posing a risk of enhancing spread of X. fastidiosa. However, our 
results also suggest that these higher transmission rates may be transient, followed by transmission rates 
similar or lower than those from susceptible plants. This may be due to some form of induced resistance 
in the plants, though our attempts to quantify the form of resistance were inconclusive. Riaz et al. (2018) 
hypothesize that PdR1 could confer a form of “non-host resistance,” a set of constitutive and induced 
traits that provide broad general resistance against pathogens (Senthil-Kumar and Mysore 2013). Such 
general resistance mechanisms include induction of phenolics through the hypersensitive response and the 
salicylic acid signaling pathway. Phenolic induction is associated with X. fastidiosa populations in olive 
trees and grapevines, although phenolic levels tend to be greater in susceptible cultivars rather than 
resistant ones (Wallis and Chen 2012; Luvisi et al. 2017). Additionally, Fritschi et al. (2007) found 
unimodal X. fastidiosa population dynamics in a range of Vitis spp. with varying levels of resistance, 
including an accession of V. arizonica related to the parental background of our PdR1 vines; they 
suggested that such unimodal dynamics could be caused by induced resistance. 

 In the current study we sought to assess the existence or possibility of an epidemic risk from 
PdR1 grapevines. Further work will need to be done to examine the factors that could contribute to 
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shortening or broadening the incubation period, and thus the epidemic risk. Additional work should also 
look at the potential use of PdR1 vines in regions with high winter recovery of grapevines—where X. 
fastidiosa populations are eliminated in the vine over the winter. Winter recovery appears to be most 
likely in cases when X. fastidiosa has not yet systemically colonized the plant and under cold winter 
temperatures (Feil et al. 2003). We would expect the dynamics in our study to play out at a longer 
timescale for much larger mature vines in the field. PdR1 induced resistance could increase rates of 
winter recovery and substantially lower annual build-up of disease pressure. Moreover, the seasonal 
timing of the incubation period and peak vector acquisition is critically important for determining the 
epidemic risk (Daugherty and Almeida 2019). 

Our bioeconomic model results assumed no winter recovery. We hypothesize that incorporating 
winter recovery into the model will lead to a broader set of epidemiological and economic conditions 
under which planting a mixture of PdR1 and susceptible grapevines would maximize grower return; for 
example, winter recovery may lead to planting PdR1 being beneficial under short-term planting strategies.  

 
Acknowledgements 
We thank Alan Tenscher for help with selecting and propagating grapevines; we thank Michael Voeltz, 
Jeffery Ezennia, Bitta Kahangi, Melissa Shinfuku, Jon Oules, Sanjeet Paluru, Tina Wistrom, and Sandy 
Purcell for help with maintaining grapevines and insect colonies, and conducting experimental work. 
Summaira Riaz, Matthew Daugherty, and members of the Almeida lab provided useful comments on 
results and early manuscript drafts.  
  



	 19	

 
Figure 1. Theoretical predictions on vector transmission dynamics in the context of plant host defense (or 
lack thereof) and vector avoidance of symptomatic hosts. Here we assume resistance is partial, meaning 
that the pathogen can colonize the host but population is growth is limited. The decline in transmission 
from Susceptible hosts is predicted to correspond to increasing vector avoidance of symptomatic plants. 
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Figure 2. Mean ± SE Pierce’s disease symptom severity index (a, b) and mean ± SE population sizes of 
X. fastidiosa in inoculated source plants (c,d) for Susceptible genotypes (open symbols, dashed lines) and 
Resistant genotypes (closed symbols, solid lines) over time. Population sizes are log10 transformed and 
expressed as colony forming units (CFU) g-1 fresh plant tissue. 
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Figure 3. Results of G. atropunctata vector feeding preference for inoculated source grapevines (closed 
circles) and X. fastidiosa-free test plants (open circles) over weeks post-inoculation for experiments in (a) 
2016 and (b) 2017. Top sub-panels show attraction rate estimates; bottom sub-panels show leaving rate 
estimates. Genotypes are shown at the top of each set of sub-panels. In 2017, genotypes 007 and 092 are 
Susceptible lines; genotypes 094 and 102 are Resistant lines. Maximum likelihood estimates (points) and 
variances were model-averaged using AICc weights. Variances were calculated using the quadratic 
approximation method and then used to calculate 95% confidence intervals (error bars). 
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Figure 4. Vector acquisition of X. fastidiosa (a, b) and transmission to test plants (c, d) from Susceptible 
(open circles, dashed lines) and Resistant (closed circles, solid lines) inoculated source plants in 2016 (a, 
c) and 2017 (b, d) experiments. Lines represent predictions from best non-linear model based on AICc 
scores. In (a) and (b), points and error bars represent mean and SE, respectively, of the proportion of 
vectors positive for X. fastidiosa.   
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Figure 5. Mean coefficient estimates ± SD from elastic net analysis of the relationship between 
explanatory variables, on the y-axis, and infection status of test plant (i.e., probability of transmission). 
The “Resistance trait” variable indicates a binomial variable where trials with Resistant sources plants are 
coded as “0” and trials with Susceptible source plants are coded as “1”; thus a positive coefficient 
indicates greater overall transmission from Susceptible plants. Attraction and leaving rates are estimated 
for each trial using the Consumer Movement Model described in the full text. Means and standard 
deviations were calculated from 500 cross-validation runs. 
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Figure 6. Mean concentrations (ppm) of all phenolics in leaves and stems and volatiles in leaves from 
Resistant (R) and Susceptible (S) source plants at different times since inoculation with X. fastidiosa. 
Sample size for each point estimate varies from 4 – 8; see PCA ordination plots (Supplementary Material, 
Appendix C, Fig. C1) for specific sample sizes of each point. Error bars represent ± SE.  
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Figure 7. Mean population size of X. fastidiosa in needle-inoculated Resistant (solid line) and Susceptible 
(dashed lines) grapevines. Plants were either inoculated twice (open circles) or inoculated once (open 
triangles). The weeks post-inoculation on the x-axis represent the weeks since the first inoculations. The 
second inoculation was conducted 17 weeks after the first. Thus population sizes were measured 4 and 9 
weeks after the second inoculation. N = 4 for each treatment and resistance combination. Error bars 
represent ± SE. 
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Figure 8. Optimal mixture of susceptible and PdR1 vines corresponds to the minimum total monetary 
loss, represented by the red line. Black solid line: loss due to planting. Dashed line: loss due to infection 
for susceptible vines. Green line: loss due to infection for PdR1 vines. Red line: total loss (blue points are 
calculated by subtracting a profit calculated from the final number of healthy plants from the maximum 
possible profit). Left panel: harvest at t = 50 time steps, right panel: harvest at t = 80 time steps. 
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 Supplementary Information Appendix A. Testing assumptions and model selection results for 
consumer movement model. 
 
Testing model assumptions 

To interrogate the assumptions of the consumer movement model, we set up a similar to the 2017 
preference-transmission experiment as described in the main text, except that the source plants were all 
susceptible genotype 007 at 15 weeks post-inoculation and only a single BGSS individual was placed in 
each cage. We began with 16 replicates with six insects dying in the course of the experiments. 

First, the model assumes that attraction and leaving rates were constant throughout the 
experiment. We interrogated this assumption by graphical inspection of the outputs of Kaplan-Meier 
survival functions as described in Zeilinger et al. (2014). While there are few points—indicating relatively 
little movement between plants by BGSS—the plots suggest that attraction rates and leaving rates were 
roughly constant, with the exception of leaving rates from X. fastidiosa-inoculated source plants (Fig. 
A1). 

Second, the model assumes that consecutive choices made by BGSS are independent. While this 
assumption can be interrogated by contingency table analysis, there were too few data points to support 
such an analysis. Rather, we opted to inspect the variance-covariance matrices from the best model 
variant from the output of maximum likelihood estimation for the main transmission experiment.  

For the 2016 trials, correlations between parameters varied substantially; about 60% of 
correlations were below 0.5, suggesting modest independence among choices (Table A1). For 2017, about 
40% of correlations between parameters were below 0.5, suggesting less independence among choices 
(Table A2).  

While the assumption of independent consecutive choices was not met in all cases, this does 
necessarily invalidate results from the Consumer Movement Model. Rather, non-independence among 
choices is likely to inflate attraction rates (Zeilinger et al. 2015). In nearly all instances, correlations—and 
thus the degree of inflation of attraction rates—were symmetrical between choices. The exceptions to this 
were in 2017 for 8- and 14-week trials with the 094 Resistant genotype (“8-094” and “14-094” entries; 
Table A2). In these instances, the leaving rate from both plants, µ, had a much higher correlation with the 
attraction rate toward the uninfected test plant, p2, than with the attraction rate toward the source plant, p1. 
In both cases, our estimates of the attraction rates suggest greater attraction toward the test plant than the 
source plant, significantly so in the 8-week trials (Fig. 3, main text). It remains unclear to what degree this 
large difference in attraction may be an artifact of non-independent choices. 

The generalization of the model for multiple consumers per cage also assumes that each 
consumer makes choices independent of others in the cage (Gray et al. in review). While no published 
research exists on independence of host plant choices of G. atropunctata, unpublished data suggest that 
choices are independent of conspecifics (A. Purcell, personal communication). 

 
Model selection results 
 We fit four variants of the Consumer Movement Model to repeated-measures G. atropunctata 
count data from each genotype and week post-inoculation. Briefly, the four model variants were: 1) the 
Fixed Model, in which the attraction and leaving rates were set equal to each other, representing a null 
hypothesis of no preference between choices; 2) the Free Attraction Model, in which the attraction rates 
to each plant were free to vary but the leaving rates from each were set equal to each other; 3) the Free 
Leaving Model, in which attraction rates were fixed but leaving rates were free to vary; and 4) the Free 
Choice Model, in which both the attraction and leaving rates were free to vary. We compared model 
variants using Aikake’s Information Criterion corrected for small sample size (AICc). We then calculated 
model-averaged parameter estimates and variances using the AICc weights of all models with values of 
ΔAICc ≤ 7 (Burnham et al. 2011). We then calculated 95% confidence intervals from these model-
averaged variances (Fig. 3 main text). 
 In the 2016 experiment, the Fixed model had the lowest ΔAICc for each combination of genotype 
and weeks, except for the trials with Susceptible source plants at 12 weeks post-inoculation (Table A3). 
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The Fixed model was clearly the best for most of these trials (i.e., the ΔAICc values for the remaining 
models were > 2), indicating that the G. atropunctata showed no preference between infected source 
plants and X. fastidiosa-free test plants. In the trials with Susceptible plants at 12 weeks, the Free Leaving 
model was the best, closely followed by the Free Attraction model (Table A3). These two models clearly 
performed better than the Fixed model, indicating that G. atropunctata showed a preference between the 
host plant choices and that this preference was likely realized through different leaving rates. 
 In the 2017 experiment, patterns of preference were more complicated than in 2016 though the 
differences were clearer (Table A4). At two weeks post-inoculation, the Fixed model fit the data best 
overall; while the Fixed model performed slightly worse than the Free Attraction and Free Leaving 
models for genotype 092 Susceptible trials, the difference was negligible (ΔAICc < 1). At five weeks post-
inoculation, the Fixed model fit the data best for trials with genotypes 007 Susceptible and 102 Resistant; 
once again, the Fixed model performed worse than the Free Attraction and Free Leaving models for 
genotype 092 Susceptible but now the difference in performance was stronger (ΔAICc > 2). Interestingly, 
for genotype 094 Resistant, the Fixed model performed much worse than all other models, with the Free 
Attraction model performing best. At eight weeks post-inoculation, the Fixed model performed the best 
for both Susceptible genotypes (007 and 092), whereas the Free Attraction model performed the best for 
both Resistant genotypes (094 and 102). At 14 weeks post-inoculation, the Free Attraction model 
performed the best for all genotypes. At the same time, the performance of the Free Attraction model as 
the best model was much clearer for the Susceptible genotypes than for the Resistant genotypes (Table 
A4). 
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Figure A1. Relationship between ln(time) and ln(-ln(S(t))) from Kaplan-Meier survival functions, where t 
(or time) represents the time that an attraction or leaving event occurred, and S(t) is the proportion of 
individuals remaining at time t. A linear relationship suggests that the attraction or leaving rate was 
constant throughout the experiment. Top panels: attraction rates from X. fastidiosa-infected source plants 
(“xf_plant”) and uninfected test plants (“test_plant”). Bottom panels: leaving rates. Analysis of attraction 
to and leaving from the insects’ first choice only are shown; too few data existed for subsequent choices 
for analysis. 
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Table A1. Correlation matrices among parameters of the Consumer Movement Model for each week-
genotype combination from the 2016 transmission experiment. 
Week-genotype combination Correlation matrix 

3-R  p µ  
 p 1 0.551  
 µ 0.551 1  
     

3-S  p µ  
 p 1 0.578  
 µ 0.578 1  
     

8-R  p µ  
 p 1 0.269  
 µ 0.269 1  
     

8-S  p µ  
 p 1 0.772  
 µ 0.772 1  
     

12-R  p µ  
 p 1 0.176  
 µ 0.176 1  
     

12-S  p µ1 µ2 
 p 1 0.488 0.49 
 µ1 0.488 1 0.882 
 µ2 0.49 0.882 1 

R = Resistant; S = Susceptible 
Choice 1 (with corresponding p1 and µ1 parameters) = X. fastidiosa-infected source plants 
Choice 2 (with p2 and µ2 parameters) = uninfected test plants 
Parameters without a numeral (p or µ) represent instances where the parameters associated with both 
choices were equal.  
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Table A2. Correlation matrices among parameters of the Consumer Movement Model for each week-
genotype combination from the 2017 transmission experiment. 
Week-genotype combination Correlation matrix 

2-007  p µ  
 p 1 0.506  
 µ 0.506 1  
     

2-092  p µ1 µ2 
 p 1 0.409 0.399 
 µ1 0.409 1 0.76 
 µ2 0.399 0.76 1 
     

2-094  p µ  
 p 1 0.508  
 µ 0.508 1  
     

2-102  p µ  
 p 1 0.611  
 µ 0.611 1  
     

5-007  p µ  
 p 1 0.707  
 µ 0.707 1  
     

5-092  p µ1 µ2 
 p 1 0.662 0.66 
 µ1 0.662 1 0.867 
 µ2 0.66 0.867 1 
     

5-094  p1 p2 µ 
 p1 1 0.732 0.579 
 p2 0.732 1 0.712 
 µ 0.579 0.712 1 
     

5-102  p µ  
 p 1 0.828  
 µ 0.828 1  
     

8-007  p µ  
 p 1 0.254  
 µ 0.254 1  
     

8-092  p µ  
 p 1 0.718  
 µ 0.718 1  
     

8-094  p1 p2 µ 
 p1 1 0.696 0.638 
 p2 0.696 1 0.768 
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 µ 0.638 0.768 1 
     

8-102  p1 p2 µ 
 p1 1 0.457 0.454 
 p2 0.457 1 0.674 
 µ 0.454 0.674 1 
     

14-007  p1 p2 µ 
 p1 1 0.378 0.564 
 p2 0.378 1 0.578 
 µ 0.564 0.578 1 
     

14-092  p1 p2 µ 
 p1 1 0.722 0.692 
 p2 0.722 1 0.854 
 µ 0.692 0.854 1 
     

14-094  p1 p2 µ 
 p1 1 0.491 0.529 
 p2 0.491 1 0.492 
 µ 0.529 0.492 1 
     

14-102  p1 p2 µ 
 p1 1 0.784 0.714 
 p2 0.784 1 0.802 
 µ 0.714 0.802 1 

Genotypes 007 and 092 are Susceptible genotypes; 094 and 102 are Resistant genotypes 
NA = Not Available; correlations were inestimable from Hessian matrix. 
Choice 1 (with corresponding p1 and µ1 parameters) = X. fastidiosa-infected source plants 
Choice 2 (with p2 and µ2 parameters) = uninfected test plants 
Parameters without a numeral (p or µ) represent instances where the parameters associated with both 
choices were equal. 
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Table A3. Model selection tables for Consumer Movement model variants for each combination of week 
post-inoculation and genotype for the 2016 transmission experiment. 
Week-Genotype combination Model AICc ΔAICc df 

3-R Fixed 146.47 0 2 
 Free Leaving 152.01 5.54 3 
 Free Attraction 152.06 5.59 3 
 Free Choice 161.34 14.87 4 
     

3-S Fixed 171.90 0 2 
 Free Leaving 176.47 4.57 3 
 Free Attraction 177.46 5.56 3 
 Free Choice 183.90 12.00 4 
     

8-R Fixed 132.33 0 2 
 Free Leaving 137.22 4.89 3 
 Free Attraction 137.84 5.51 3 
 Free Choice 146.54 14.22 4 
     

8-S Fixed 153.10 0 2 
 Free Leaving 158.61 5.51 3 
 Free Attraction 158.63 5.53 3 
 Free Choice 167.94 14.85 4 
     

12-R Fixed 145.83 0 2 
 Free Attraction 148.75 2.92 3 
 Free Leaving 149.49 3.66 3 
 Free Choice 157.95 12.12 4 
     

12-S Free Leaving 158.39 0 3 
 Free Attraction 159.81 1.41 3 
 Fixed 161.58 3.19 2 
 Free Choice 167.52 9.13 4 

R = Resistant genotype; S = Susceptible genotype 
AICc = Aikake’s Information Criterion corrected for small sample size 
ΔAICc = Difference between lowest AICc score and a given score 
df = degrees of freedom, i.e., number of model parameters 
Separate tables are sorted by ΔAICc in ascending order 
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Table A4. Model selection tables for Consumer Movement model variants for each combination of week 
post-inoculation and genotype for the 2017 transmission experiment. 
 
Week-Genotype combination Model AICc ΔAICc df 

2-007 Fixed 138.32 0 2 
 Free Leaving 143.53 5.21 3 
 Free Attraction 143.59 5.27 3 
 Free Choice 152.85 14.52 4 
     

2-092 Free Leaving 127.55 0 3 
 Free Attraction 127.83 0.28 3 
 Fixed 128.43 0.88 2 
 Free Choice 136.37 8.82 4 
     

2-094 Fixed 137.87 0 2 
 Free Leaving 140.58 2.71 3 
 Free Attraction 140.60 2.72 3 
 Free Choice 149.65 11.78 4 
     

2-102 Fixed 134.87 0 2 
 Free Attraction 137.72 2.84 3 
 Free Leaving 138.44 3.57 3 
 Free Choice 147.05 12.17 4 
     

5-007 Fixed 141.89 0 2 
 Free Leaving 147.42 5.53 3 
 Free Attraction 147.47 5.57 3 
 Free Choice 156.70 14.80 4 
     

5-092 Free Leaving 151.41 0 3 
 Free Attraction 154.30 2.90 3 
 Fixed 155.02 3.62 2 
 Free Choice 160.37 8.96 4 
     

5-094 Free Attraction 147.77 0 3 
 Free Leaving 149.23 1.46 3 
 Free Choice 156.34 8.57 4 
 Fixed 169.29 21.51 2 
     

5-102 Fixed 161.38 0 2 
 Free Leaving 166.20 4.82 3 
 Free Attraction 166.67 5.30 3 
 Free Choice 174.68 13.3 4 
     

8-007 Fixed 129.41 0 2 
 Free Attraction 134.83 5.41 3 
 Free Leaving 135.01 5.60 3 
 Free Choice 144.11 14.7 4 
     

8-092 Fixed 148.86 0 2 
 Free Attraction 151.50 2.64 3 
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 Free Leaving 152.37 3.50 3 
 Free Choice 160.73 11.87 4 
     

8-094 Free Attraction 170.06 0 3 
 Free Choice 178.47 8.41 4 
 Free Leaving 181.82 11.76 3 
 Fixed 184.15 14.09 2 
     

8-102 Free Attraction 135.96 0 3 
 Free Leaving 139.16 3.20 3 
 Free Choice 144.13 8.17 4 
 Fixed 154.92 18.96 2 
     

14-007 Free Attraction 128.15 0 3 
 Free Choice 137.46 9.31 4 
 Free Leaving 138.13 9.98 3 
 Fixed 144.90 16.74 2 
     

14-092 Free Attraction 149.60 0 3 
 Free Leaving 152.69 3.09 3 
 Free Choice 156.75 7.15 4 
 Fixed 190.25 40.65 2 
     

14-094 Free Attraction 136.05 0 3 
 Free Leaving 137.68 1.63 3 
 Fixed 140.87 4.82 2 
 Free Choice 145.33 9.27 4 
     

14-102 Free Attraction 149.07 0 3 
 Free Leaving 149.25 0.18 3 
 Free Choice 157.51 8.44 4 
 Fixed 168.32 19.25 2 

Genotypes 007 and 092 are Susceptible genotypes; 094 and 102 are Resistant genotypes 
AICc = Aikake’s Information Criterion corrected for small sample size 
ΔAICc = Difference between lowest AICc score and a given score 
df = degrees of freedom, i.e., number of model parameters 
Separate tables are sorted by ΔAICc in ascending order 
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Supplementary Information Appendix B. Description and Results of Fitting Non-linear Models 
Methods for fitting non-linear models 
 As described in the main text, we fit a series of non-linear models to our data on vector 
acquisition and transmission in our 2016 and 2017 experiments. The models are described in Table B1. 
For a review describing each model, see Bolker (2008).  
 For vector acquisition data, the response variable was the number of vectors infected with X. 
fastidiosa out of the total vectors recovered from each cage; for transmission data, the response variable 
was the infection status of each test plant. In both cases, we assumed that the response variable was 
binomially distributed and the explanatory variable was weeks post-inoculation. We estimated the 
parameters of each model from the data using maximum likelihood estimation and the R package bbmle 
(Bolker and R Core Team 2017). We selected the best model based on Aikake’s Information Criterion 
corrected for small sample size (AICc). Statistical inference was made from 95% confidence intervals of 
parameter estimates calculated using the quadratic approximation method (Bolker 2008). In 2017, to 
maximize sample size and statistical power, we tested the Resistant and Susceptible genotypes separately; 
in other words, we selected the best model for both Resistant genotypes together and did the same for 
both Susceptible genotypes together. 
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Table B1. Description of non-linear models used in fitting vector acquisition and transmission data. 
Model name Equation Functional form Mathematical family 
Holling Type IV 

𝑦 =
𝑎𝑥!

𝑏 + 𝑐𝑥 + 𝑥!
 

 

Unimodal Rational 

Ricker 𝑦 = 𝑎𝑥𝑒!!" 
 

Unimodal Exponential 

Michaelis-Menten 𝑦 =
𝑎𝑥
𝑏 + 𝑥

 

 

Saturating Rational 

Logistic Growth 𝑦 =
1

1 +  𝑒! !!!"  

 

Saturating Exponential 

Linear 𝑦 = 𝑎 + 𝑏𝑥 
 

Linear Polynomial 

In model equations, the variable y represents either the proportion of vectors infected with X. fastidiosa or 
the infection status of the test plant in each trial, whereas x represents weeks post-inoculation. While we 
use the same symbol/letter to represent the parameters in each equation, parameters among models with 
the same symbol are not directly comparable. We followed the parameterizations of the models described 
in (Bolker 2008). 
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Table B2. Results on model selection among non-linear models of vector acquision. 
 
Genotype-Year Model AICc ΔAICc df 
Resistant-2016 Ricker 15.49 0 2 

 
Holling Type IV 17.71 2.21 3 

 
Logistic Growth 18.87 3.38 2 

 
Linear 19.09 3.59 2 

 
Michaelis-Menten 20.07 4.58 2 

     Susceptible-2016 Ricker 15.41 0 2 

 
Holling Type IV 17.63 2.21 3 

 
Michaelis-Menten 22.95 7.54 2 

 
Logistic Growth 23.70 8.29 2 

 
Linear 23.71 8.29 2 

     Resistant-2017 Holling Type IV 32.13 0 3 

 
Ricker 56.70 24.58 2 

 
Michaelis-Menten 62.26 30.13 2 

 
Linear 71.56 39.44 2 

 
Logistic Growth 74.55 42.43 2 

     Susceptible-2017 Holling Type IV 59.73 0 3 

 
Ricker 85.56 25.83 2 

 
Michaelis-Menten 94.61 34.88 2 

 
Linear 109.31 49.58 2 

 
Logistic Growth 112.50 52.77 2 

AICc = Aikake’s Information Criterion corrected for small sample size 
ΔAICc = Difference between lowest AICc score and a given score 
df = degrees of freedom, also the number of parameters  
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Table B3. Parameter estimates and 95% confidence intervals from best models for vector acquisition. 
Genotype-Year Model Parameter Estimate [2.5%, 97.5% CI] 
Resistant-2016 Ricker a 0.366 [0.238, 0.508] 
  b 0.16 [0.139, 0.2] 
Susceptible-2016 Ricker a 0.394 [0.315, 0.466] 
  b 0.152 [0.145, 0.175] 
Resistant-2017 Holling Type IV a 0.049 [0.04, 0.057] 
  b 50.364 [ND, ND] 
  c -13.35 [-13.353, -13.348] 
Susceptible-2017 Holling Type IV a 0.111 [0.099, 0.123] 
  b 52.354 [ND, ND] 
  c -13.234 [-13.234, -13.234] 
ND = Not Determined; confidence intervals could not be calculated by inverting the Hessian matrix. 
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Table B4. Results of model selection among non-linear models for transmission. 
Genotype-Year Model AICc ΔAICc df 
Resistant-2016 Logistic Growth 13.14 0 2 

 
Ricker 13.15 0.01 2 

 
Linear 13.16 0.01 2 

 
Michaelis-Menten 14.21 1.07 2 

 
Holling Type IV 18.74 5.59 3 

     Susceptible-2016 Ricker 14.34 0 2 

 
Logistic Growth 15.35 1.01 2 

 
Linear 15.4 1.06 2 

 
Michaelis-Menten 16 1.66 2 

 
Holling Type IV 19.4 5.06 3 

     Resistant-2017 Holling Type IV 16.95 0 3 

 
Linear 19.87 2.92 2 

 
Ricker 19.88 2.93 2 

 
Michaelis-Menten 20.06 3.11 2 

 
Logistic Growth 22.55 5.6 2 

     Susceptible-2017 Ricker 16.37 0 2 

 
Michaelis-Menten 16.97 0.6 2 

 
Linear 17.93 1.56 2 

 
Logistic Growth 18.05 1.68 2 

 
Holling Type IV 18.7 2.33 3 

AICc = Aikake’s Information Criterion corrected for small sample size 
ΔAICc = Difference between lowest AICc score and a given score 
df = degrees of freedom, also the number of parameters  
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Table B5. Parameter estimates and 95% confidence intervals from best models of transmission. 
Genotype-Year Model Parameter Estimate [2.5%, 97.5% CI] 
Resistant-2016 Ricker a 0.704 [0.291, 1.032] 
  b 0.344 [0.27, 0.524] 
Susceptible-2016 Ricker a 0.399 [0.172, 0.575] 
  b 0.196 [0.151, 0.294] 
Resistant-2017 Holling Type IV a 0.069 [ND, ND] 
  b 62.221 [ND, ND] 
  c -14.517 [ND, ND] 
Susceptible-2017 Ricker a 0.07 [0.021, 0.189] 
  b 0.111 [0.011, 0.238] 
ND = Not Determined; confidence intervals could not be calculated by inverting the Hessian matrix. 
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Supplementary Material. Appendix C. Secondary metabolites of PdR1 resistant and susceptible 
grapevines 
Sampling methods 

We measured a profile of secondary metabolites from inoculated source plants within our 
transmission experiment. At the end of each trial, we collected two leaf blades and a 3 cm section of 
woody stem from each X. fastidiosa-infected source plant. We collected samples only from genotypes 092 
Susceptible and 094 Resistant for logistical reasons.  

 
Principal Components Analysis 
 To describe how secondary metabolites over the course of disease in the Resistant and 
Susceptible genotypes, we conducted a principal components (PC) analysis at each time point post-
inoculation on the 105 individual secondary metabolites identified. We then tested which principal 
components clearly differed between genotypes using one-way ANOVAs, using the loadings of each PC 
for each observation. The approach is similar to principal components regression (e.g., Pareja et al. 2009) 
in that we sought to identify which set of secondary metabolites were most different between genotypes at 
each time point post-inoculation. However, here genotype (Resistant vs. Susceptible) was the sole 
explanatory variable and each PC was the response variable in a separate ANOVA. Following Pareja et 
al. (2009), we included only PCs that explained a cumulative 99% of total variance. 
 Ninety-nine percent of total variance in secondary metabolites was explained by the first six PCs 
at 2-weeks post-inoculation, 12 PCs at 5 weeks post-inoculation, 14 PCs at 8 weeks, and 11 PCs at 14 
weeks. In each case these PCs were tested for differences between the two genotypes. Figure C1 plots the 
two most relevant PCs for each time point. At two weeks post-inoculation, we found no clear statistically 
significant difference between genotypes among any of the PCs tested. At five weeks post-inoculation, 
genotypes were clearly separated along PC2 (F1,12 = 6.82, P = 0.023) while they were less clearly 
different along PC7 (F1,12 = 4.21, P = 0.063). At eight weeks post-inoculation, genotypes strongly 
differed along PC4 (F1,14 = 17.75, P < 0.001) with loadings being overall lower in Resistant than 
Susceptible source plants (Fig. C1). Further examination of our PCA results suggest that, at eight weeks, 
the Resistant grapevines had relatively lower concentrations of compounds including quercitin, astragalin, 
kaempferol-7-O-glucoside, and kaempferol-3-O-glucoside; whereas these Resistant vines had greater 
concentrations of procyanidin-β-gallate 2, epicatechin gallate, and coutaric acid 1. At 14 weeks post-
inoculation, genotypes were clearly separated to similar degrees along PC1 (F1,11 = 6.35, P = 0.029) and 
PC2 (F1,11 = 6.64 0.026). The Resistant grapevines had relatively lower concentrations of compounds 
including astragalin, coutaric acid dimer, and kaempferol-7-O-glucoside, whereas Resistant vines had 
greater concentrations of Δ-viniferin, quercitin-3-O-glucoside in stems, epicatechin gallate, miyabenol C, 
piceid, unidentified volatile S, trans- and cis-β-ocimene, and coutaric acid 1. 
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Figure C1. The Principal Components (PCs) that differed most between Resistant and Susceptible 
genotypes for all 105 secondary metabolites isolated from source plants at each time point: (a) 2 weeks, 
(b) 5 weeks, (c) 8 weeks, (d) 14 weeks post-inoculation. Individual points (i.e., source plants) are colored 
according to resistance status: orange = Resistance, blue = Susceptible. When fewer than two PCs were 
significantly different between genotypes, PC1 and PC2 are plotted. The percent of overall variation in 
the data set captured by each principal component is provided on the relevant axes. 
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Figure C2. Mean coefficient estimates ± SD from elastic net analysis of the relationship between 
secondary metabolite concentration (as well as PD symptom severity), on the y-axis, and estimated 
attraction rates for G. atropunctata vectors from the Consumer Movement Model to source plants. 
Negative coefficient estimates indicate that the predictor (i.e., compound) is negatively related to 
attraction rates. Means and standard deviations were calculated from 500 cross-validation runs. The most 
frequently selected values for the tuning parameters from cross-validation were α = 0.1 and λ = 1.55. We 
excluded compounds that were dropped from the model (i.e., those that had a coefficient estimate of zero) 
in at least half of the cross-validation runs. 
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Figure C3. Mean coefficient estimates ± SD from elastic net analysis of the relationship between 
secondary metabolite concentration (as well as PD symptom severity), on the y-axis, and estimated 
leaving rates for G. atropunctata vectors from the Consumer Movement Model from source plants. 
Negative coefficient estimates indicate that the predictor (i.e., compound) is negatively related to leaving 
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rates. Means and standard deviations were calculated from 500 cross-validation runs. The most frequently 
selected values for the tuning parameters from cross-validation were α = 0 and λ = 34.53. No compounds 
were dropped from the model. 
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Supplementary Material Figure S1. Complete reinfection timeseries 
 

 
Figure S1. Complete timeseries for X. fastidiosa population size estimates from the reinfection 
experiment, measured over weeks since the first inoculation. Treatments include “inoc1” where plants 
were inoculated only at the first inoculation date; “inoc2” where plants were inoculated only at the second 
inoculation date; and “inoc1-2” where plants were inoculated at both inoculation dates. Second 
inoculation occurred 17 weeks after the first inoculation. Panels represent the different genotypes used in 
the experiment with Susceptible genotypes on the top row (007 and 092) and Resistant genotypes on the 
bottom row (094 and 102).  
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