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V. INTRODUCTION. 

X. fastidiosa (Xf) is a Gram-negative, xylem-limited bacterium that causes Pierce’s disease 
(PD) of grapevines (Chatterjee et al. 2008).  Xf is transmitted to plants by insect vectors and 
once in the xylem, Xf is postulated to migrate, aggregate, and form biofilm that clogs the vessels 
leading to PD.  We, and others, have studied Xf proteins and genetic mechanisms involved in 
these steps (Guilhabert and Kirkpatrick 2005, Meng et al. 2005, Feil et al. 2007, Li et al. 2007, 
Shi et al. 2007, da Silva Neto et al. 2008, Cursino et al. 2009, Cursino et al. 2011, Cursino et al. 
2015) with the goal of better understanding PD virulence and for development of prevention 
strategies. 

We deleted the Xf PD1311 gene (PD1311), a putative acyl-CoA synthetase (ACS), as we 
were interested in genes potentially involved in secondary metabolite production.  ACSs 
catalyze long-chain fatty acyl-CoAs (Black et al. 1992) and are involved in numerous processes 
including pathogenicity (Barber et al. 1997).  We found that PD1311 is a functional enzyme 

(data not shown), and that PD1311 grows in PD2 and Vitis vinifera sap (Fig.1). 

Motility, aggregation, and biofilm production are key behaviors of Xf that are associated with 

PD (Chatterjee et al. 2008).  PD1311 is reduced in type IV pili-mediated motility on PW plates 
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Fig. 1. PD1311 strain growth curve.  Wild-type X.  fastidiosa (black square), PD1311 mutant (blue 
circle), and complemented mutant (green triangle) strains were grown for eight days in PD2 (left) or 
100% Vitis vinifera cv. Chardonnay xylem sap (right) and growth was determined by OD600 readings.   
 

 

                                                         
Fig. 2. Motility of PD1311 mutant strain.  Colony fringes of wild-type, PD1311 mutant, or 

PD1311 complement (PD1311-C) strains were assayed on PW agar or 80% V. vinifera sap agar.  
Colonies were assessed after five days of growth (Meng et al. 2005, Li et al. 2007).  Colonies 
photographed at 90X magnification.  Experiment was repeated three times. 

 

                                
Fig. 3. Aggregation and biofilm formation by PD1311 strain.  A) Aggregation of wild-type, 

PD1311 mutant, or PD1311 complement (PD1311-C) strains grown in test tubes for five days in 3 
ml of PD2 (Burdman et al. 2000, Davis et al. 1980, Shi et al. 2007).  The experiment was repeated 
three times.  B) Quantification of biofilm formation in 96 well plates (Zaini et al. 2009).  Experiment was 
repeated three times with 24 replicates each. 
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and is non-motile on 
sap agar (Fig. 2). In 
comparison to wild-type 
cells (Temecula 1), 

PD1311 is reduced in 
aggregation and biofilm 
production (Fig. 3).  We 
therefore hypothesized 

that PD1311 is less 
virulent in plants, as 
mutants with similar 
phenotypes have been 
shown to have reduced 
or be avirulent (Cursino 
et al. 2009, Cursino et al. 
2011, Guilhabert and 
Kirkpatrick 2005, Killiny 
et al. 2013).  We found 

that PD1311 was 
avirulent and showed no 
PD, even at twenty weeks post-inoculation (Fig. 4). 

The weakly virulent Xf elderberry strain EB92-1 has been studied as a potential PD 
biological control (Hopkins 2005, Hopkins 2012).  Other approaches towards controlling PD 
include resistant rootstocks (Cousins and Goolsby 2011) and transgenic vines (Dandekar 2014, 
Gilchrist et al. 2014, Gilchrist and Lincoln 2014, Kirkpatrick 2014, Lindow 2014, Powell and 
Labavitch 2014).  Continued research of PD controls is warranted.  We had preliminary results 

that PD1311 lowers the incidence of wild-type-induced PD (data not shown).  Given the 

avirulent phenotype of PD1311 and its ability to limit wild-type induced PD, this strain provides 
new potential for a commercialized biological control 

VI. LIST OF OBJECTIVES. 

The overall goal is to optimize PD1311 as a biological control for PD and to understand the 
mechanisms of disease inhibition that will facilitate commercialization. 

Objective 1. Examine aspects of PD1311 Temecula strain as a biological control of PD. 

a. Optimize application timing and conditions for the PD1311 strain. 

b. Determine if over-wintered PD1311 inoculated plants maintain PD resistance.   

c. Explore leafhopper transmission of the PD1311 strain. 

d. Develop clean deletion strain of PD1311 that would be suitable 
commercialization. 

Objective 2. Determine the function of the PD1311 protein and the mechanism by which 

PD1311 acts as a biological control.   

a. Elucidate the role of PD1311 protein. 

b. Examine impact of the PD1311 strain on wild-type Xf in vitro and in planta.  

 

 

 
Fig. 4. Development of Pierce’s Disease.  Grapevines were 

inoculated with wild-type Xf (black square), PD1311 strain (blue 

triangle), PD1311 complement (green x), and buffer (gray circle).  
Symptoms were monitored and rated on a scale of 0-5 (Guilhabert and 
Kirkpatrick 2005, Cursino et al. 2009).  Data represents averages of 
three trials.   
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VII. DESCRIPTION OF ACTIVIES.  

Objective 1. Examine aspects of PD1311 Temecula strain as a biological control of PD. 

Objective 1a. Optimize application timing and conditions for the PD1311 strain. 

To examine if the Xf PD1311 
Temecula 1 strain could act as a 
potential biocontrol, we inoculated V. 
vinifera cv. Cabernet Sauvignon 
vines per standard procedures 
(Cursino et al. 2011) and recorded 
development of PD using the five-
scale assessment (Guilhabert and 
Kirkpatrick 2005).  We created three 
different inoculation conditions:  i) 
wild-type Xf after a two week pre-

treatment with PD1311 [following 
procedures used in Xf elderberry 
EB92.1 strain biocontrol studies 
(Hopkins 2005)], ii) wild-type and 

PD1311 co-inoculated, and iii) 

controls (wild-type-only, PD1311-
only, buffer).  We previously found 

that inoculating PD1311 after a two 
week pre-treatment with the wild-type 
strain did not limit PD (data not 
shown).  Our controls included vines 
inoculated with wild-type Temecula 1, 

PD1311, or buffer (Hopkins 1984).  
We found that pre-treatment with 

PD1311 inhibits PD, while co-
inoculation does not alter disease 
development (Fig. 5).   

Objective 1b. Determine if over-

wintered PD1311 inoculated 
plants maintain PD 
resistance.   

In 2014 we had V. vinifera plants 

infected with wild-type Xf or PD1311 
two weeks prior to wild-type Xf.  
These vines were cut back and 
placed in nursery storage for the 
2015 winter.  The plants were then grown in the greenhouse in Spring 2015 to follow potential 
PD development.  Preliminary results showed that wild-type Xf could overwinter and cause PD 

in the following year.  Plants treated with PD1311 followed by wild-type Xf did not show 

symptoms either year and ELISA did not detect Xf (Temecula 1 or PD1311) in year 2 (Table 

1). This data suggests that PD1311 protection may last overwintering. However, we have not 
explored whether biocontrol treatment in year 1 would protect against a fresh wild-type 

inoculation in year 2. If found, this result would indicate that the PD1311 biocontrol may have 

 
Fig. 5. ∆PD1311 inoculation to grape prior to wild-type 
suppressed PD development. A) Weekly mean disease 
ratings of vines inoculated with wild-type-only 
(triangles), wild-type and ∆PD1311 simultaneously 
(circles), ∆PD1311 two weeks prior to wild-type 
(diamonds), ∆PD1311-only (squares) and buffer (x 
marks) respectively.  Error bars represent standard 
errors. Ten plants were included for each experiment 
and the assay was repeated twice. B) Disease rating 
for each vine at 24 w.p.i. 1 = wild-type-only, 2 = 

PD1311-only, 3 = co-inoculation with wild-type and 

PD1311 simultaneously, 4 = PD1311 two weeks 
before wild-type, and 5 = buffer.  
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long-lasting protection in the field. If symptoms do develop in year 2 in the PD1311-treated 
plants, this result will indicate that reapplication of the biocontrol will be necessary to maintain 
PD suppression.  

Objective 1c. Explore leafhopper transmission of the PD1311 strain. 

Xylem-sap feeding leafhopper vectors transmit Xf from plant to plant (Chatterjee et al. 
2008).  The 
bacterium utilizes 
adhesins, such as 
FimA, HxfA, and 
HxfB, to attach and 
form biofilms on 
insect foreguts, 
which then 
becomes a source 
of inoculum for 
further disease 
spread (Killiny and 
Almeida 2009, 
Killiny et al. 2010).  
Thus interaction with insects is a known key step for Xf to accomplish its life cycle.  For 
development of ∆PD1311 as a commercially viable biological control agent and for future field 
studies, it will be necessary to understand its insect transmissibility.  Because ∆PD1311 has 
reduced aggregation and biofilm (Fig. 3), we hypothesize that ∆PD1311 is altered in its ability to 
be insect vectored.  As an initial assay, we want to examine the adhesion of the mutant strain to 
the hindwing of the leafhopper vector, as this assay has been found to mimic adhesion to the 
foregut region owning to similar chitinous nature of the cuticles (Killiny et al. 2010).  We have 
preliminary data to show that ∆PD1311 attached to insect wings at a level similarly to the wild-
type strain (Fig. 6). We will repeat the experiments for further verification.   

 Objective 1d. Develop clean 

deletion strain of PD1311 
that would be suitable 
commercialization. 

PD1311 was created via 
site-specific recombination of 
a kanamycin cassette into 
the Xf chromosome 
(Matsumoto et al. 2009, Shi 
et al. 2009).  For commercial 
viability, the antibiotic marker 
needs to be removed from 
the strain. Unlabeled 
Agrobacterium tumefaciens 
mutants have been created 
(Merritt et al. 2007), which 
will be the first approach we 
attempt.  This work will begin 
soon. 

Table 1. Xf ELISA results overwintered plants.a 

Treatment 
Year 1b 

Symptoms 
Year 1c 

Symptoms 
Year 2 

0cmd 30cmd 150cmdcm 

WT + 
+ +/1e +/1 +/1 

- -/3 -/3 -/3 

PD1311 then 
WT 

- - 
-/2 -/2 -/2 

a Plants overwintered in cold storage between year 1 and 2. 
b Plants were given no further inoculations in year 2. 
c “+” = PD symptoms; “-“ = no PD symptoms.  
d Sample distance up from inoculation point in year 2. 
e “+”or “–“ indicated positive or negative for Xf, respectively / “number” is the 

number of plants tested by ELISA in year 2. 

Fig. 6. The PD1311 strain attached to leafhopper hind 
wings similarly to the wild-type strain.  The attachment 
assay was performed as described previously (Baccari et al. 
2014). The experiment was performed once with eight 
replicates included for each strain.  
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Objective 2. Determine the function of the PD1311 protein and the mechanism by which 

PD1311 acts as a biological control. 

The Xf PD1311 gene has motifs suggesting it encodes an ACS protein (acyl- and aryl-CoA 
synthetase) (Chang et al. 1997, Gulick 2009).  ACS metabolite intermediates are involved in 
beta-oxidation and phospholipid biosynthesis.  ACS proteins have also been implicated in cell 
signaling (Korchak et al. 1994), protein transportation (Glick and Rothman 1987), protein 
acylation (Gordon et al. 1991), and enzyme activation (Lai et al. 1993).  Importantly, ACSs are 
involved in pathogenicity (Banchio and Gramajo 2002, Barber et al. 1997, Soto et al. 2002).  We 
plan to characterize the role of the PD1311 protein in order to understand how the deletion 
strain is avirulent and functions as a biological control.  Additionally we plan to explore the 
general mechanism by which the deletion strain suppresses wild-type Xf-induced PD.  Basic 
understanding of its function will facilitate development and acceptance as a viable biological 
control. 

Objective 2a.  Elucidate the role of PD1311 protein. 

ACS proteins metabolize fatty acids through a two-step process to form a fatty acyl-CoA 
precursor utilized in any downstream metabolic pathways (Roche et al. 2013, Watkins 1997, 
Weimar et al. 2002).  To confirm enzymatic activity, we expressed and purified a PD1311-His 
tag protein, and we tested it for ligase activity using acetate as the substrate.  Acetate is the 
simplest substrate for fatty acid synthetase reaction, as a two-carbon (C2) chain length 
molecule.  We used a standard colorimetric assay that measures acyl-CoA production (Kuang 
et al. 2007).  The PD1311 protein exhibited a functional ATP/AMP binding domain that 
performed the following reaction:  ATP + acetate + CoA is converted to AMP + pyrophosphate + 
acetyl-CoA.  Therefore we confirmed that the protein is functional. 

The deletion of the PD1311 gene is non-lethal, suggesting that it has a role in non-essential 
fatty acid metabolism.  One possibility is that PD1311 plays a role in DSF production, however, 
our preliminary results do not support that role (data not shown).  An alternative potential role for 
the PD1311 protein is in precursor production of lipopolysaccharide (LPS).  LPS is found on the 
outer membrane of gram-negative bacteria and is composed of a lipid A innermost component, 
a core saccharide, and an outer most O-antigen.  Upstream of PD1311, are three genes 
annotated as LPS-associated enzymes:  lipid A biosynthesis N-terminal domain protein 
(PD1312), dolichol-phosphate mannosyltransferase (Dpm1) (PD1313), and WbnF nucleotide 
sugar epimerase (PD1314) (Simpson et al. 2000).  Dolichol-phosphate mannosyltransferase 
proteins are involved in N-linked oligosaccharides in the LPS core (Kapitonov and Yu 1999), 
while nucleotide sugar epimerases are involved in O-antigen synthesis (Lam et al. 2011).  LPS 
is a known major virulence factor of Xf, and changes in LPS integrity renders bacteria more 
susceptible to environmental stress and defective in virulence (Clifford et al. 2013).  
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Considering the avirulent phenotype of 
∆PD1311 on grapevines, PD1311 may be 
involved in lipid A biosynthesis or membrane 
production.  Therefore, the ∆PD1311 cells 
may be more sensitive to environmental 
stresses such as oxidative stress and 
cationic antimicrobial peptide polymyxin B 

(PB).  When wild-type and PD1311 cells 
were exposed to hydrogen peroxide on agar 
plates in a Kirby-Bauer type assay, the zone 
of inhibition was greater for the mutant strain 
than wild-type cells (Fig.  7A). In addition, 
∆PD1311 cells were more sensitive to PB 
than wild-type or ∆PD1311 complement 
cells. While both wild-type and ∆PD1311 
complement cells grew on plates 
supplemented with 16 µg/mL PB, almost all 
∆PD1311 cells were killed when plated on 
PW agar supplemented with 1 ug/mL PB 
(Fig. 7B). We are exploring how this 
sensitivity may be associated with the 
possible modification of the outer cell 
envelope of ∆PD1311 to gain better 
understanding of its avirulence on 
grapevines.    

 

Objective 2b.  Examine impact of the 

PD1311 strain on wild-type Xf in vitro and 
in planta.  

To have better grounding on why 

PD1311 acts as a biological control, we 
need to explore the mechanism by which the 
mutant strain impacts wild-type cells.  We 
have preliminary results showing that the 
wild-type induced disease can be limited 

only when PD1311 was inoculated two 
weeks before the pathogen (Fig.  5). 
Therefore we would like to know how the 
two strains spread through the plant when 
both are inoculated. In multiple trials, we 
found that six weeks post inoculation, 

PD1311 was not detected in the plants 
either by direct plating with ground plant 
shoot pieces or by ELISA test with petioles sampled at multiple locations on grapevines, 

including the inoculation point (data not shown). It appears that PD1311 cells are either dead 
in the vines or decline to a level below detection. Therefore, bacterial populations determined 
from dilution plating with tissues from the co-inoculated vines only represent those of the wild-

type Xf.  PD1311 does not secrete a toxin that affects wild-type populations (Fig. 8); we grew 

 
Fig. 7. Relative sensitivity of ∆PD1311 to 
H2O2 and polymixin B (PB). A) Mean 
diameters of inhibition zones of wild-type 
(empty bars), ∆PD1311 (dotted bars) and 
∆PD1311 complement (dashed bars) 
exposed to 100 or 500 mM of H2O2 on PD2 
agar plates. Error bars represent standard 
deviations. Three replicates were included 
for each experiment and the assay was 
repeated twice. * represents a significant 
difference of p<0.01. B) Growth of wild-type 
and complement (C-∆PD1311) on PD2 
plates amended with 16 µg/mL PB and 
growth of ∆PD1311 on PD2 plates with 1 
µg/mL PB. Images were taken under a 
Stemi-2000C dissecting microscope with a 
magnification of 3.2X. The assay was 
repeated at least four times with similar 
observations.  
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wild-type cells in supernatant from PD1311 cells and found no growth changes (data not 
shown).  Understanding how the mutant cells impact wild-type Xf is important for understanding 
not only how the biological control is achieved but also how the treatment would be most 
effectively applied in the field. 

 

VIII. SUMMARY OF ACCOMPLISHMENTS AND RESULTS FOR EACH OBJECTIVE. 

Concerning objective 1, we confirmed that PD1311 is avirulent, and we found that it can 

significantly reduce PD development by wild-type Xf. Preliminary data suggests that PD1311 
attaches to insect hindwings equal to wild-type cells and therefore could possibly be distributed 
by the vector.  For objective 2, our preliminary results show that the mutant has greater 
sensitivity to chemical environments (hydrogen peroxide, antimicrobial peptides), which may 
contribute to its avirulent phenotype and help explain the role of the protein in the bacterium. 
Overall, this work will help further our understanding of disease development and prevention. 
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Fig. 8. Xf populations in planta.  Plants were inoculated with wild-type-only (wt) or co-

inoculated with wild-type cells (wt+PD1311). After 16 weeks plants were ground and plated on 
PW. Results from two wild-type plants and three co-inoculation plants. 
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chemosensory signal transduction system that controls twitching motility and virulence in 
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Mowery P, Johnson KL, Cursino L, Burr TJ. Xylella fastidiosa virulence factor mutant strain as a 
potential biocontrol for Pierce’s disease. APS-MSA, Austin, TX, 2013. Poster. 

Mowery P. “How does your vineyard grow? Understanding the grapevine pathogen, Xylella 
fastidiosa.” Department of Biology. Ithaca College. Ithaca, NY, 2013. Presentation. 

 

X. RESEARCH RELEVANCE STATEMENT.  

Xylella fastidiosa is an important phytopathogen that infects a number of important crops 
including citrus, almonds, and coffee. The X. fastidiosa Temecula strain infects grapevines and 
induces Pierce’s disease.  We recently deleted the X. fastidiosa PD1311 gene and found that 
the mutant strain is avirulent.  Based on sequence analysis, PD1311 is predicted to encode an 
acyl-CoA synthetase, which is a class of enzymes involved in many different processes 

including secondary metabolite production. We have characterized PD1311 and found 

phenotypes consistent with reduced virulence. In addition to PD1311 being avirulent it also 

reduces the virulence of wild-type X. fastidiosa. Therefore, we propose that the PD1311 has 
potential as a biological control for PD.  

 

XI. LAY SUMMARY OF PROJECT ACCOMPLISHMENTS.  

We discovered that deleting the X. fastidiosa Temecula 1 gene, PD1311, results in a strain 
that does not induce Pierce’s Disease.  We are conducting research to determine how PD1311 
plays such a central role in symptom development.  Given the agricultural importance of 
Pierce’s Disease, it is critical to understand how PD1311 exerts its effects.  Additionally, we 
have evidence that the PD1311 mutant has potential as a biological control.  When grape plants 
were inoculated with the mutant prior to wild-type X. fastidiosa, disease development becomes 
significantly reduced.  Options for managing Pierce’s Disease are limited, which makes 
development of new control strategies critically important.  Together the results from these aims 
will expand our understanding of Pierce’s Disease and provide information in relation to 
controlling the disease.   

XII. STATUS OF FUNDS. 

$107,711.05  of the funds are left.  

 

XIII. SUMMARY AND STATUS OF INTELLECTUAL PROPERTY ASSOCIATED WITH THE 
PROJECT. 

No intellectual property has resulted from research done under this grant.  However further 
development of the PD1311 mutant could result in a commercially viable control for PD. 
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