INTRODUCTION

Geminiviruses are single-stranded DNA (ssDNA) viruses that cause major losses to many crops throughout the world\(^1\). \textit{Geminiviridae} constitutes the second largest family of plant viruses. Geminiviruses are characterized by small, circular, ssDNA genomes encapsidated in twinned (hence, the name \textit{Gemini}) icosahedral particles\(^4,6\). They are vector-transmissible and infect both monocotyledonous and dicotyledonous plants\(^7\). The genomes are either monopartite or bipartite with circular DNA molecules of 2.5-3 kb. Geminiviruses possess a highly conserved common region (CR) of \(\sim 200\) nucleotides containing an inverted repeat that forms a hairpin loop with an invariant 9-nt sequence 5’-TAATATT↓AC-3’. The viral gene products are required for its replication and transmission. Successful commercialization of engineered viral resistance for certain crops has drawn on invented strategies for blocking virus replication.

\textit{Grapevine Red Blotch Virus} (GRBV) is a monopartite, grapevine-infecting Grablovirus causing Red Blotch Disease and was first observed in California in 2008\(^8\). Bahder \textit{et al.}\(^9\) identified the alfalfa leafhopper \textit{Spissistilus festinus} as the candidate vector that transmits GRBV under laboratory conditions. Disease symptoms manifest as red patches in the middle of the grapevine leaf and in veins and petiole, which coalesce at the end of the growing season\(^10\). GRBV infection results in delayed and uneven berry ripening, higher titratable acids, reduced sugar and reduced anthocyanin content in the berry\(^11\), impairing fruit qualities which threaten both table grape and wine industries\(^12\).

Consistent with geminiviruses, GRBV possesses the conserved nonanucleotide sequence and transcription is bidirectional\(^10\). GRBV encodes three ORFs in the virion strand (\(V1, V2, \) and \(V3\)) and three in the complementary strand (\(C1, C2, \) and \(C3\); \textbf{Fig. 1}). Similar to mastrevirus (a monopartite geminivirus), GRBV complementary-sense ORF \(C1\) encodes RepA, Replication-associated protein. Another spliced transcript encompassing the \(C1\) and \(C2\) ORFs encodes Rep, the Replication protein\(^10,13-15\). GRBV virion-sense strand ORFs \(V2\) and \(V3\) are predicted to encode movement proteins, whereas \(V1\) ORF encodes coat protein.

\textbf{Fig. 1.} Genome organization of Grapevine red blotch virus (GRBV), previously called blotch-associated virus (GRBaV).

The functions of the predicted GRBV ORFs are yet to be elucidated experimentally. Understanding the molecular mechanisms by which the virus mounts a successful infection is fundamental and essential to develop cogent engineered resistance strategies. A practical issue is that the few proteins encoded by geminiviruses are multifunctional and likely modulate several host regulatory genes, a mechanism uniquely evolved by the viruses to balance the genome size-constraint emplaced by the capsid. A comprehensive ‘omics’ profiling experiment on berry development and select metabolite and enzyme quantitations in GRBV-infected grape from two different
vineyards suggests several host regulatory pathways, in particular phenylpropanoids, are impacted by the virus16. GRBV infection results in deranged expression of host post-transcriptional machinery, transcription factors, and several hormone biosynthesis and response pathways. Post-transcriptional gene silencing (PTGS) processes involving microRNAs (miRNAs), small-interfering RNAs (siRNAs) and phased siRNAs (phasiRNAs) are known to regulate host immune responses to viruses and microbes, as well as normal plant development and hormonal signaling17, 18. Hence, we postulate GRBV manifests disease by specifically targeting the host PTGS machinery by "suppressor proteins," thereby driving the observed reprogramming of multiple host regulatory and metabolic pathways for its successful replication and transmission.

PTGS has evolved as a major host defense mechanism against invasive pathogens including viruses. Asymptomatic leaves with abundant viral siRNAs are natural outcomes of most host-virus interactions associated with reduced but persistent viral titer, induction of PTGS in the host, and symptom recovery19. miRNAs and siRNAs are the specificity "guide" for nucleases of the ARGONAUTE (AGO) class which cleave or otherwise repress protein-coding transcripts in a nucleotide sequence-specific manner20, 21. The presence of a robust viral counter defense mechanism is underscored by the ubiquitous presence of one or more silencing suppressor proteins in the genomes of many plant viruses. The "arms race" between host silencing of pathogen transcripts and silencing suppression by pathogen gene products results in resistance or susceptibility to the pathogen. Numerous geminiviruses encode silencing suppressor proteins that target PTGS, transcriptional gene silencing (TGS), and cellular regulatory genes (Table I).

Table I. Suppressor proteins characterized in Geminivirus and their plant targets.

<table>
<thead>
<tr>
<th>Virus*</th>
<th>Suppressor</th>
<th>Suppressing PTGS</th>
<th>Suppressing TGS</th>
<th>Cellular pathways</th>
</tr>
</thead>
<tbody>
<tr>
<td>MYMV</td>
<td>AC2</td>
<td>Upregulate host suppressor protein WEL122</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGMV BCTV</td>
<td>AL2 L2</td>
<td>Inactivate Adenosine kinase23, 24</td>
<td>Inactivate a serine-threonine kinase SnRK125</td>
<td></td>
</tr>
<tr>
<td>BSCTV</td>
<td>C2</td>
<td>Stabilize S-adenosyl methionine decarboxylase1 (SAMDC1)26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGMV CaLCuV BCTV</td>
<td>AL2 L2</td>
<td>Inactivate Adenosine kinase and stabilize SAMDC127</td>
<td>Inhibit histone Me-transferase SUVH4/KYP28</td>
<td></td>
</tr>
<tr>
<td>TGMV SCTV</td>
<td>AL2 C2</td>
<td></td>
<td>Elevation of cellular cytokinin levels29</td>
<td></td>
</tr>
<tr>
<td>TYLCSV</td>
<td>C2</td>
<td></td>
<td>Interact with CSN5 and inhibit jasmonate signaling30</td>
<td></td>
</tr>
<tr>
<td>ACMV</td>
<td>AC4</td>
<td>Binds ss miRNA31</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WDV</td>
<td>Rep</td>
<td>Binds ss-and duplexed 21 and 24 nt siRNAs32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TYLCV</td>
<td>V2</td>
<td>Compete NbMET1 for binding to hist deacetylase33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Acronyms: Mungbean yellow mosaic virus: MYMV; Tomato golden mosaic virus: TGMV; Beet curly top virus: BCTV; Beet severe curly top virus: BSCTV; Cabbage leaf curl virus: CaLCuV; Spinach curly top virus: SCTV; Tomato yellow leaf curl Sardina virus: TYLCSV; Tomato yellow leaf curl virus: TYLCV; African cassava mosaic virus: ACMV; Wheat dwarf virus: WDV

Previous work on the model plant Arabidopsis in the PI's lab showed altered source-sink distributions of sucrose and the stress hormone abscisic acid (ABA)34 interact to regulate anthocyanin accumulation via miR828, Trans-Acting Small-interfering locus4 (TAS4), and their target MYeloBlastosis viral oncogene-like (v-MYB) transcription factors, viz. Vvi-MYBA6/7 and close homologues targeted by miR828 in grapevine35, 36. We recently characterized the conserved autoregulatory loop involving miR828 and TAS4 down-regulates anthocyanin biosynthesis during berry development by targeting MYB transcription factors induced by UV light in grape37. The recently published transcriptome profiling study of GRBV-infected host berries identified significant repression rate-limiting ABA biosynthesis loci NCED2/3 (first described by the PI38) in infected berries16.

2
Our working model (Fig. 2) is that GRBV infection interferes with the normal PTGS pathways of the host by the activity of viral-encoded suppressor proteins. miRNAs/tasiRNAs/phasiRNAs regulate a large array of host gene expression at the post-transcriptional level and transcriptional levels. Viruses utilize plant miRNAs to facilitate pathogenesis, and plants have co-opted miRNAs for plant innate immunity21, 39-41. Their collective loss in virus-infected tissues that results in susceptibility42, 43 demonstrates their functions as master regulators targeted by pathogens. Broader roles for plant sRNAs in evolutionary adaptations44, 45 may include virus vector feeding processes and preferences. Under P, starvation, reduced ABA and sugar regulate the expression of miRNAs that facilitate anthocyanin biosynthesis by MYB-bHLH-WD40 ternary transcriptional complexes. Increases in MYB-bHLH-WD40 results in up-regulation of miR828 via the conserved auto-regulatory loop involving the miR828-TAS4-MYBA5/6/7 being the targets of GRBV suppressor proteins.

bHLH-WD40 results in up-regulation of miR828 via the conserved auto-regulatory loop34, 37 involving miR828/TAS4 to regulate MYBA5/6/7 levels and thereby anthocyanin levels (Fig. 2). We hypothesize the red blotch phenomena observed in GRBV-infected grape leaves is a consequence of viral suppressor proteins targeting the miR828/TAS4/MYBA5/6/7 autoregulatory loop which fine tune anthocyanin levels by a "rheostat" feedback37.
GRBV effects on berry development and metabolism was reported16. Table II provides preliminary evidence drawn from this publicly available berry transcriptome data which supports our model. As per our hypothesis we observe a near-statistically significant downregulation of Vvi-TAS4c at veraison and post-veraison in GRBV-infected berries, indicating the miR828-TAS4-MYB pathway is a specific target of GRBaV. This is supported by the strong up-regulation of MYBA6 at harvest, the target of a deeply conserved TAS4c tasi-RNA 3’D4(-) along with several other MYBs36, 37 shown to function in the phenylpropanoid/flavonol pathway and targeted by miR828. Interestingly, we observe up-regulation of AGO, DICER2 and SUPPRESSOR OF GENE SILENCING3 (SGS3) transcripts, all major effectors of the PTGS machinery and themselves subject to PTGS and spawning of amplified phasiRNAs46, 47. It will be very interesting to determine if transitivity of these loci is deranged by GRBV; we hypothesize a repression of host sRNA effector machinery upon virus infection, but the evidence is that the host is compensating by overexpressing PTGS effector pathways. This could be because the data we analyzed is from different developmental stages of berry ripening, which is also under post-transcriptional regulation. These preliminary results underscore the need to perform transcriptome and sRNA analysis from different tissues of field-infected grapevines including girdled petioles at the sites of vector feeding to decipher the targets of GRBV (http://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=20473).

<p>| Table II. Analysis of publicly available transcriptome dataa for GRBV-infected berries across development |
|---|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>target; sRNA effector</th>
<th>gene ID</th>
<th>developmental stage: pre-veraison</th>
<th>veraison</th>
<th>post-veraison</th>
<th>harvest</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRBaV genome</td>
<td>JQ91105.2</td>
<td>n.d. 6.26</td>
<td>1.91E-15</td>
<td>NA NA NA NA</td>
<td>NA 6.76</td>
</tr>
<tr>
<td>Vvi-TAS4c; miR828</td>
<td>chr:1:296125:2961747</td>
<td>3375 NA NA -1.01 0.13 -1.01 0.13 0.38</td>
<td>0.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGO1a; miR168/530</td>
<td>VIT_17s0053g00680</td>
<td>n.d. 0.06</td>
<td>0.55 0.17 0.04 0.17 0.04 0.16</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>AGO1b; miR168/530</td>
<td>VIT_19s0014g01840</td>
<td>n.d. 0.26</td>
<td>0.47 0.43 0.44 0.43 0.44 0.08</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>MYBA6, TAS4</td>
<td>VIT_14s0006g01290</td>
<td>22.2 NA NA NA NA NA NA 1.25</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MYBPH1; miR828</td>
<td>VIT_00s0341g00050</td>
<td>476 0.52</td>
<td>0.01 0.12 0.39 0.12 0.39 0.13</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>MYB; miR828</td>
<td>VIT_17s0000g08480</td>
<td>1330 0.62</td>
<td>0.09 0.33 0.35 0.33 0.35 0.35</td>
<td>NA NA</td>
<td></td>
</tr>
<tr>
<td>MYB; miR828</td>
<td>VIT_04s0079g00410</td>
<td>24.6 0.39</td>
<td>0.01 0.17 0.04 0.17 0.04 -0.06</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>AGO2a; miR403</td>
<td>VIT_10s0042g01180</td>
<td>50 0.61</td>
<td>0.61 0.36 0.07 0.36 0.07 0.82</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>AGO2b; miR403</td>
<td>VIT_10s0042g01200</td>
<td>n.d. 0.04</td>
<td>0.81 0.03 0.81 0.03 0.81 -0.16</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>DCL2; unknown</td>
<td>VIT_04s0023g00920</td>
<td>33.8 0.39</td>
<td>0.25 0.47 0.03 -0.14 0.03 0.11</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>SGS3; unknown</td>
<td>VIT_07s0130g00190</td>
<td>177.4 0.04</td>
<td>0.69 0.23 0.01 0.23 0.01 0.16</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>DCL1; miR162</td>
<td>VIT_15s0048g02380</td>
<td>n.d. 0.05</td>
<td>0.62 0.05 0.54 0.05 0.54 -0.21</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>^ Oakville vineyard dataset (ref. 16) analysed by kallisto/sleuth.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OBJECTIVES OF PROPOSED RESEARCH AND PATH TO APPLICATION:

I. Characterize hypothesized silencing suppressor protein(s) encoded by GRBaV to establish the molecular mechanism by which GRBaV (and GLRaV by inference) cause disease by derangement of host microRNAs (miRNAs), \textit{trans}-acting small interfering (tasi-) RNAs, and phased-tasi-RNAs (phasi-RNAs).

II. Identify the host grapevine targets of GRBaV suppressor proteins

III. Creation of model system transgenics for future characterization of the host targets of GRBaV suppressor proteins

DESCRIPTION OF ACTIVITIES CONDUCTED TO ACCOMPLISH OBJECTIVES

Objective I.

We PCR-amplified GRBV genes \textit{V1}, \textit{V3}, \textit{C1}, and \textit{C3} with engineered HindIII/SacI flanking sites, and \textit{V2/C2} with HindIII/EcoRI sites from genomic DNA extracted from GRBV-infected grape leaf tissue collected in 2016 from 'Calle Contento' vineyard (cv. Merlot) in Temecula CA. The PCR fragments were successfully cloned into the corresponding sites of pJIC-35S vector48. We confirmed the clones by Sanger sequencing and by restriction enzyme site mapping (Fig. 3a and 4a; pJIC-35S-C1 and pJIC-35S-V2 shown as representative). The pJIC-35S-ORF cassettes (except pJIC-35S-V3, which has an internal EcoRV site) were excised as EcoRV fragments and cloned into the Smal site of binary vector pCAMBIA2301. The V3 cassette was separately PCR amplified and cloned as blunt-ended PCR fragment into the Smal site of binary vector. The clones and their
orientations were confirmed by multiple restriction site mapping (Figs. 3b and 4b; e.g. pCAM-C1-gus and pCAM-V2-gus shown as representative).

![Fig. 3. Restriction analysis of viral ORF cloned a) pJIC-35S-C1; b) pCAM-C1-gus](image)

<table>
<thead>
<tr>
<th>HindIII</th>
<th>SacI</th>
<th>HindIII/SacI</th>
<th>EcoRV</th>
<th>EcoRV/EcoRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.6 kb</td>
<td>3.6 kb</td>
<td>2.8 kb + 0.8 kb</td>
<td>2.1 kb + 1.5 kb</td>
<td>2.1 kb + 0.8 kb + 0.43 kb + 0.23 kb</td>
</tr>
<tr>
<td>pCAMBIA 2301</td>
<td>EcoRI</td>
<td>HindIII</td>
<td>HindIII/SacI</td>
<td></td>
</tr>
<tr>
<td>11.6 kb</td>
<td>11.6 kb</td>
<td>11.6 kb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pCAM-C1-gus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.6 kb</td>
<td>11.6 kb</td>
<td>11.6 kb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pCAM-C1-gus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HindIII</th>
<th>EcoRI</th>
<th>HindIII/EcoRI</th>
<th>EcoRV</th>
<th>EcoRV/BamHI</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3 kb</td>
<td>3.3 kb</td>
<td>2.8 kb + 0.5 kb</td>
<td>2.1 kb + 1.2 kb</td>
<td>2.1 kb + 0.6 kb + 0.5 kb</td>
</tr>
<tr>
<td>pCAMBIA 2301</td>
<td>EcoRI</td>
<td>HindIII</td>
<td>HindIII/SacI</td>
<td></td>
</tr>
<tr>
<td>11.6 kb</td>
<td>11.6 kb</td>
<td>11.6 kb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pCAM-V2-gus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.6 kb</td>
<td>11.6 kb</td>
<td>11.6 kb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pCAM-V2-gus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 4. Restriction analysis of viral ORF cloned a) pJIC-35S-V2; b) pCAM-V2-gus

All six C1-3/V1-3 binary vectors were electroporated into A. tumefaciens strain EHA105. The electroporation was confirmed by PCR with respective ORF primers (Fig. 5). To evaluate if GRBV possesses viral silencing suppressor proteins, N. benthamiana line 16c, developed in the laboratory of Sir David Baulcombe49 expressing A. victoria jellyfish Green Fluorescence Protein (GFP) was used as the test system. In this system, RNA silencing of the gfp transgene can be triggered by transient expression of a gfp (trigger)-expressing vector. The over-expression of transiently transformed gfp (trigger) construct normally results in RNAi-mediated co-suppression of the stably integrated gfp transgene. Consequently, the agroinfiltrated leaf will exhibit loss of GFP protein and UV-excited fluorescence, and instead red auto-fluorescence from chlorophyll (chl) is observed as a positive control result. When a silencing suppressor protein gene construct is co-infiltrated along with gfp (trigger), the test infiltrated zone will exhibit rescue of green fluorescence as marker of suppression of silencing.
Six-week-old *N. benthamiana* 16c plants were agroinfiltrated with the *A. tumefaciens* strain harboring the p35S-gfp (pBI-mgfp5-ER; the 'trigger') either alone (mgfp; a positive control for silencing), or co-infiltrated p35S-gfp with pCAMBIA-2301 empty vector (to rule out the empty vector by itself cannot suppress silencing), or with co-infiltration of one of the respectively six test GRBV constructs. Potyvirus HcPro⁵⁰ construct co-infiltration served as positive control for silencing suppression. Five days post infiltration, local GFP silencing of infiltrated leaves was observed under long wave UV light as red chl fluorescence (Fig. 6: mgfp; mgfp+pCAM-2301). To evaluate the silencing suppression effect of co-expressed GRBV genes, the 16c plants were agroinfiltrated with 1:1 test mixture of the *A. tumefaciens* strains harboring p35S-gfp (trigger) plus one p35S-V1/p35S-V2/p35S-V3/p35S-C1/p35S-C2 or p35S-C3 construct, respectively. As expected, bright green fluorescence was observed in the infiltrated zones (on either side of the central midvein) with mgfp plus HcPro co-inoculation (Fig. 6; mgfp+HcPro). GRBV C1, C3, V1 and V3 construct co-infiltrations did not result in green fluorescence, demonstrating their expression did not suppress the silencing triggered by mgfp (Fig. 6; mgfp+C1; mgfp+C3; mgfp+V1; mgfp+V3). In the presence of GRBV C2 and V2 expression from co-infiltrated constructs, the infiltrated area displayed green fluorescence, similar to the HcPro silencing suppression positive control (Fig. 6; mgfp+C2; mgfp+V2). Thus, we have established that GRBV C2 and V2 proteins are candidate suppressor proteins. This result has been repeated, providing compelling evidence for C2 and V2 functioning as GRBV silencing suppressor proteins.

Objective I completion requires an independent proof of silencing by assaying the molecular markers for the process. For the first round of agroinfiltration, RNA blot analysis of the RNAs extracted from agroinfiltrated leaf tissue was performed using gfp gene as probe. The agroinfiltrated area was harvested by visualization and dissection under UV light and total RNA was extracted and leaf samples were pooled from 5-8 technical replicates. Leaves from mock-infiltrated sections accumulated gfp transcript (Fig. 7), proving there was no silencing. Agroinfiltration of P35S-gfp triggers silencing of GFP protein expression as consequence of complete absence of gfp transcript due to sRNA-induced slicing of the 2 kb mRNA by host silencing machinery (Fig. 7). Co-infiltration with mgfp+HcPro resulted in green fluorescence and return of steady state abundance of gfp transcript, as expected. Co-infiltration with mgfp+GRBV-V2 resulted in green fluorescence and comparable accumulation of gfp transcript to that of control HcPro, providing additional independent evidence that V2 is a silencing suppressor gene.

We repeated the agroinfiltration assay and the phenotypic results were the same as presented in Fig. 6. We extracted total RNA and performed quantitative Real-Time PCR (qPCR) with gfp primers. We used actin primers as internal control to normalize for amplification efficiency. The efficiency of three sets of gfp primers and a pair of actin primers was tested by plotting a standard curve of 2 -fold dilutions of template cDNAs from V2- and C2-agroinnoculated excised leaves. The gfp primers with 110% (Fig. 8a) and actin primers with 104% (Fig. 8b) were used for subsequent relative expression comparisons using V2- and C2-specific primer pairs.
Agroinfiltration of P35S-gfp is expected to degrade the gfp transcript, and although red fluorescence and loss of detectable gfp mRNA was observed (Figs. 6) the high sensitivity of qPCR showed some amount of gfp transcript was still present (Fig. 9) in positive control mgfp agroinnoculated leaf samples when compared to the Mock-infiltrated plant GFP mRNA level (set to unity). This unexpected observation suggests that the silencing trigger did not completely degrade the gfp transcript made from the agroinfiltrated P35S-gfp. Similar results were
observed51 by the Co-I in \textit{gfp}-triggered silencing experiments to test \textit{Mungbean yellow mosaic virus} suppressor proteins, where the silencing by controls was not complete. Although, C2 and HcPro showed relative increases in \textit{gfp} transcript above trigger alone control as expected for silencing suppressors (\textbf{Fig. 9}), V2 did not show a relative increase in \textit{gfp} transcript. We attribute the variations we observed from the expected results to errors in the sample collection technique. Dissecting out the infiltration zone under UV light is laborious and quite tricky; it is likely that we had accidentally collected certain regions of non-infiltrated leaf samples in our sample pool. We are repeating the agroinfiltration experiment and we will be collecting leaf samples very precisely (0.5 cm inside from the apparent edges of the infiltration zones) to address this technical issue with sample collection.

\textbf{Summary of Objective I accomplishments:}
Taken together our protein, mRNA blot and qPCR results have provided conclusive evidence that GRBV genes C2 and V2 are suppressor proteins. We are repeating the agroinfiltration assay to verify the claim and will publish the results then after.

\textbf{Objective II: Identify the host grapevine targets of GRBV suppressor proteins}

We are taking a systems approach to address the molecular mechanisms by which GRBV causes symptoms by quantitative genome-wide analyses of host messenger RNAs, miRNAs, sRNAs, and phasiRNAs deranged in field samples of vineyard leaves manifesting GRBV infection symptoms versus healthy plants. Towards this we have confirmed the presence and absence of GRBV infected and healthy plants, respectively by PCR amplification of V2 ORF (\textbf{Fig. 10}; representative data of viral confirmation by PCR). We have made 10 sRNA libraries from control healthy and GRBV-infected leaf sRNA extracts from samples collected in Temecula CA in 2016 as well as from GRBV-infected and control samples collected in July 2018 from Pinot Noir cultivars collected in Jacksonville, OR. We collected 24 new samples from Temecula in June 2019 and the libraries are currently being prepared for sequencing in process at UCR- Institute of Integrative and Genome Biology (IIGB).
We have also made six RNA libraries from control healthy and GRBV-infected leaf RNA extracts from samples collected from Pinot Noir cultivars in Jacksonville, OR in July 2018. The deep sequencing results from these libraries are under analysis. Genome-wide systems analysis of such datasets can reveal the specific host genes in vegetative tissues deranged by the pathogen and provide leads for understanding the underlying mechanisms, e.g. specific miRNA effectors of host gene regulatory networks controlling plant immunity. We will generate a late 2019 growing season set of sRNA-seq and RNA-seq libraries from field samples manifesting GRBV symptoms for deep sequencing to be collected in August/September in Sonoma Co. CA and southern Oregon with the assistance of Rhonda Smith and K.C. Achala, respectively. Several years of biological replicate libraries across environmental variables will add statistical power to our analyses.

Summary of Objective II accomplishments:

We have established baseline datasets for interpretation of test sequencing experiments, in progress. The results from multiple years of field sampling will afford powerful statistical inference of the targets of GRBV suppressor proteins.

Objective III: Creation of model system transgenics for future characterization of the host targets of GRBV suppressor proteins

We have extensive experience in Arabidopsis and tobacco transformation, and have generated axenic tissue culture of the transgenic tobacco line 237 that overexpresses AtMYB90 anthocyanin biosynthesis effector. We will then 'super-transform' the homozygous and heterozygous transgene genotypes in tissue culture with suppressor protein-expression constructs (Fig. 3b and 4b). This will enable us to critically and easily test in regenerated plants effect of GRBV suppressor protein on anthocyanin accumulation and molecular signatures of the underlying endogenous autoregulatory miR828/TAS4/ANTHOCYANIN2 MYB loop pathway activated by AtMYB90 overexpression. We are in the process of obtaining a USDA-BRS permit to ship binary constructs in hand (Fig. 3b and 4b) for V2 and C2 suppressor protein expression to Dr. David Tricoli at UC Davis Ralph Parsons Plant Transformation facility, who will generate transgenic tobacco expressing the V2 and C2 candidate suppressor genes as fee-for-service. Based on results to date for structure-function of GRBV V2 and C2 genes (Objective I), and host sRNA and mRNA sequencing (Objective II), we are confident for rapid progress and ultimate success of Objective III, the overexpression of the C2 and V2 suppressor proteins in Arabidopsis and tobacco in order to empirically and directly characterize by biochemical approaches those sRNAs specifically bound by V2 and C2 with high affinity. This latter objective is beyond the scope of one year of support, but we are on track for completion of this objective in the second year.

Summary of Objective III accomplishments:

Initiation of tissue culture for stable transformation of a facile system (AtMYB90 overexpressing tobacco line 237) to assess V2 and C2 functions in planta. The significance is synergy with other Objectives: sRNA and total RNA blots probed for the putative host target miRNAs in C2 and V2- over-expressing lines will provide evidence of sufficiency for hypothesized V2 and C2 functions to silence anthocyanin synthesis mediated by host
phasiRNAs. We predict concordance in expression profiles of putative targets in over-expression lines with that of sequencing data (Objective II) which could independently validate the sRNA targets of GRBaV suppressor proteins.

PUBLICATIONS AND PRESENTATIONS MADE THAT RELATE TO THE FUNDED PROJECT

Sunitha S, Loyola R, Alcalde JA, Arce-Johnson P, Matus JT, Rock CD (2019) The role of UV-B light on small RNA activity during grapevine berry development. G3: Genes Genomes Genetics 9: 769-787. This paper is not directly related to the project, but lays the groundwork for Objective II with baseline characterization of host miRNAs regulated during berry development and in response to abiotic light and oxidative stresses. The work was funded by FAPESP-SPRINT Brazilian-TTU Joint Program and TTU-VPR Open Access Publication Initiative awards to the PI.

RESEARCH RELEVANCE STATEMENT, INDICATING HOW THIS RESEARCH WILL CONTRIBUTE TOWARDS FINDING SOLUTIONS TO RED BLOTCH VIRUS IN CALIFORNIA

The Board has suggested genetic modification of genes involved in diffusible signals (here, applies to viral suppressor proteins) and host chemical specificity for disease etiology (here applies to host target small RNAs). The Objectives are fundamental to proofs-in-principle that the hypothesis is correct; future research can address the Board’s directive to develop chemical inducers of host resistance. It is likely that miRNAs and tasi-RNAs operate systemically by moving through vasculature, raising prospects of genetic engineering of grapevine rootstocks for GRBaV resistance in non-genetically modified organism (GMO) scions⁵⁵-⁵⁸.

LAYPERSON SUMMARY OF PROJECT ACCOMPLISHMENTS

We have accomplished all of Objective I and half of Objective II, and have initiated Objective III. We are close to understanding how GRBV causes disease: through its dual silencing suppressor proteins C2 and V2. The knowledge gained should inform and present cogent strategies (e.g. transgenic and/or genome-edited grapevine resistant to viruses) for combatting the emerging virus threats to a multibillion-dollar industry. Results are also informative as to suggest possible conserved mechanisms underlying Leaf Roll-associated Virus (GLRaV) and other viral disease states.

STATUS OF FUNDS

Funds were expended on track as budgeted.

SUMMARY AND STATUS OF INTELLECTUAL PROPERTY ASSOCIATED WITH THE PROJECT

No intellectual property was developed from this project, but an invention disclosure may be forthcoming from future work.

LITERATURE CITED

53. Jia F, Rock CD. (2013) Jacalin lectin At5g28520 is regulated by ABA and miR846. Plant Signl Behav 8: e24563